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Abstract

The objective of this article is to analyse the statistical behaviour of a large
number of weakly interacting diffusion processes evolving under the influence of a
periodic interaction potential. We focus our attention on the combined mean field
and diffusive (homogenisation) limits. In particular, we show that these two limits
do not commute if the mean field system constrained to the torus undergoes a
phase transition, that is to say, if it admits more than one steady state. A typical
example of such a system on the torus is given by the noisy Kuramoto model of
mean field plane rotators. As a by-product of our main results, we also analyse
the energetic consequences of the central limit theorem for fluctuations around the
mean field limit and derive optimal rates of convergence in relative entropy of the
Gibbs measure to the (unique) limit of the mean field energy below the critical
temperature.
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Abstract In this paper, we study the combined mean field and homogenization limits
for a system of weakly interacting diffusions moving in a two-scale, locally periodic
confining potential, of the form considered in Duncan et al. (Brownian motion in
an N-scale periodic potential, arXiv:1605.05854, 2016b). We show that, although
the mean field and homogenization limits commute for finite times, they do not, in
general, commute in the long time limit. In particular, the bifurcation diagrams for the
stationary states can be different depending on the order with which we take the two
limits. Furthermore, we construct the bifurcation diagram for the stationary McKean–
Vlasov equation in a two-scale potential, before passing to the homogenization limit,
and we analyze the effect of the multiple local minima in the confining potential on
the number and the stability of stationary solutions.

Keywords McKean–Vlasov equation · Interacting particles · Multiscale diffusions ·
Bifurcation diagram · Phase transitions · Desai–Zwanzig model · Curie–Weiss model

Mathematics Subject Classification 35Q70 · 35Q83 · 35Q84 · 82B26 · 82B80

1 Introduction

Systems of interacting particles, possibly subject to thermal noise, arise in several
applications, ranging from standard ones such as plasma physics and galactic dynam-
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Weakly Interacting Diffusions

N indistinguishable interacting particles in Ω = Rd etc.
Xi
t ∈ Ω: location of the ith particle, i = 1, . . . , N .

Xi
0 are i.i.d random variables with law ν0 ∈ P(Rd).

Xi
t Xj

t

N−1∇W (Xi
t −Xj

t )

BjtBit

−∇V (Xi
t) −∇V (Xj

t )

dXi
t = −∇V (Xi

t)−
1

N

N∑
i 6=j
∇W (Xi

t −Xj
t ) dt+

√
2β−1 dBit ,

where V,W ∈ C2(Rd), 1-periodic, even, Bit independent Wiener processes.
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Applications and Extensions

Some applications:
Plasma Physics

Stellar Dynamics

Collective behaviour of multiagent systems

Synchronization

Opinion Dynamics

Algorithms for sampling/optimization1

Extensions:
Inertia, e.g. underdamped Langevin dynamics.

Colored, non-Gaussian, multiplicative noise2.

non-Markovian dynamics, e.g. the generalized Langevin equation3 .

1On stochastic mirror descent with interacting particles: convergence properties and variance
reduction (with A. Borovykh, N. Kantas, P. Parpas). Physica D (2021).

2The Desai-Zwanzig mean field model with colored noise (with S.N. Gomes and U. Vaes). SIAM J.
MMS, 18(3) pp. 1343-1370 (2020)

3Mean field limits for non-Markovian interacting particles: convergence to equilibrium, GENERIC
formalism, asymptotic limits and phase transitions (with M. H. Duong). Comm. Math. Sci. (2018).
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a b s t r a c t

An open problem in optimization with noisy information is the computation of an exact minimizer that
is independent of the amount of noise. A standard practice in stochastic approximation algorithms is to
use a decreasing step-size. This however leads to a slower convergence. A second alternative is to use
a fixed step-size and run independent replicas of the algorithm and average these. A third option is to
run replicas of the algorithm and allow them to interact. It is unclear which of these options works best.
To address this question, we reduce the problem of the computation of an exact minimizer with noisy
gradient information to the study of stochastic mirror descent with interacting particles. We study the
convergence of stochastic mirror descent and make explicit the tradeoffs between communication and
variance reduction. We provide theoretical and numerical evidence to suggest that interaction helps
to improve convergence and reduce the variance of the estimate.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Optimization models that arise in artificial intelligence and
statistical learning applications often include noisy estimates of
the function and its gradient. This is the case when for exam-
ple the gradient is computed over a subset (or mini-batch) of
the data. In such a situation it is known that the optimization
algorithm will converge to a neighborhood of the minimizer [1].
The size of the neighborhood depends on the amount of noise. In
addition, for constrained optimization problems noise can violate
the constraints making the situation even more complex.

In various applications it can be beneficial to be able to control
the fluctuations around the true minimum. The conventional
way to control the error is to decrease the step size. Theoretical
analysis suggests step sizes which are slow in practice, e.g. O(1/t)
in [2]. An alternative is to use a vanishing noise variance [3]
or heuristics such as to increase the batch size over time (see
e.g. [4]); this however increases the computational costs and is
difficult to tune. Another option is to run independent replicas of
the algorithm. We will refer to each of these runs as a particle.
The question we address in this paper is whether it is beneficial
to allow these particles to interact with each other. We study
this question using the general framework of Stochastic Mirror

⇤ Corresponding author.
E-mail addresses: a.borovykh@imperial.ac.uk (A. Borovykh),

n.kantas@imperial.ac.uk (N. Kantas), panos.parpas@imperial.ac.uk (P. Parpas),
g.pavliotis@imperial.ac.uk (G.A. Pavliotis).

Descent (SMD) (see [5]). SMD can be used to solve constrained
and unconstrained problems, and is known to be an optimal
algorithm for certain classes of optimization problems [6].

In this paper we will consider generic convex optimization
problems of the form,

min
x2X

{f (x)},

where X ⇢ Rd is a closed convex set that describes the con-
straints. We are interested in investigating the performance and
properties when the minimizer x⇤ is estimated using the follow-
ing Itô stochastic differential equation (SDE)

dzit = �rf (xit )dt +
NX

j=1

Aij(z
j
t � zit )dt + �dBi

t ,

xit = r�⇤(zit ), i = 1, . . . ,N,

where each particle is driven by independent Brownian motions
Bi
t and � is the mirror map used in Mirror Descent (MD); we

will present more details in Section 2. The interesting feature
here is that particles interact through the matrix A = {Aij}Ni,j=1,
which is a N ⇥ N doubly-stochastic matrix representing the
interaction weights. This interaction will attract particles towards
each other. The matrix A represents an interaction graph which
imposes communication constraints on the agents: each particle
i can communicate directly only with its immediate neighbors,
i.e. j 2 {1, . . . ,N} for whom Aij 6= 0. In the absence of interactions
(i.e. when A = 0) the dynamics would correspond to independent
replicas of SMD.

https://doi.org/10.1016/j.physd.2021.132844
0167-2789/© 2021 Elsevier B.V. All rights reserved.
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The Kuramoto model: W (x) = −
√

2
L

cos
(
2π x

L

)
with Ω = T (the quotiented process)
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The Hamiltonian can be written as

HN (x1, . . . , xN ) = − 1

2N

∑
i,j

cos(2π(xi − xj)) = − 1

2N

∑
i,j

Si Sj , (1)

where Si = (cos(2πxi), sin(2πxi)).

The corresponding Gibbs measure is

µN,θ(dx) =
1

ZN,θ
e−βθHN (x)λN (dx), ZN,θ =

∫
TN

e−βθHN (x)λN (dx). (2)

Let F ∈ C2(T), denote by µNt (dx), write W (x) = − cos(2πx) the empirical measure
and apply Itô’s formula to obtain∫

T
F (x)µNt (dx)−

∫
T
F (x)µN0 (dx)

= −θ
∫ t

0

∫
T2

F ′(x)W ′(x− y)µNs (dx)µNs (dy) ds

= β−1

∫ t

0

∫
T
F ′′(x)µNs (dx) ds+MN,F (t),

where MN,F (t) is a continuous martingale with quadratic variation
〈MN,F 〉(t) = 1

N

∫ t
0

∫
T(F ′(x))2µNs (dx) ds.
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By Doob’s martingale inequality we have that

F
(

sup
t∈[0,T ]

MN,F (t)

)
≤ 〈MN,F 〉(t) ≤ T

N
‖F‖2L∞ .

Therefore, the stochastic term vanishes in the limit as N → +∞ so that the limit of the
empirical measure, if it exists, is deterministic.

We study the limit in the space C0([0, T ];M1(T)) whereM1(T) is the space of
probability measures on T equipped with the topology of weak convergence.

Proving tightness of the family of empirical (probability) measures, assuming chaotic
initial conditions and proving uniqueness of the limiting equation, we can pass rigorously
to the limit to obtain the mean field PDE

∂ρ

∂t
= β−1 ∂

2ρ

∂x2
+ θ

∂

∂x

(
(W ′ ? ρ)ρ

)
, (3)

where µt(dx) = ρ(t, x) dx.
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The Fokker–Planck equation

Hamiltonian: HN (x1, . . . , xN ) := 1
2N

∑
i,jW (xi − xj) +

∑
i V (xi)

The generator of the process is
L = −∇HN · ∇+ β−1∆.

Associated Fokker–Planck/forward Kolmogorov equation for the law νN = Law(X1
t , . . . , X

N
t ):{

∂tνN = β−1∆νN +∇ · (∇HNνN ), (t, x) ∈ (0,∞)× (Rd)N

νN (0) = νN0 = ν⊗N0 ∈ P((Rd)N )

Initial data i.i.d.
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The mean-field limit N → +∞

Consider the empirical measure : ν(N) := 1
N

∑N
i=1 δXi

t
∈ P(Rd). Easier to study E

[
ν(N)

]
:

Theorem (The mean-field limit/propagation of chaos)

As N →∞, E
[
ν(N)

]
converges in weak-? to ν(t,dx) = ν(t, x) dx, which solves (weakly):

∂tν = β−1∆ν +∇ · (ν(∇W ? ν +∇V )) (McKean–Vlasov equation)

with initial datum ν0 ∈ P(Rd).

Another interpretation: νN → ν⊗N as N →∞.

1 The McKean–Vlasov equation:

1 Classical: McKean ’66, Oelschläger ’84, Gärtner ’88, Sznitman ’91 (coupling)
2 Rates of convergence: Sznitman ’91, Mouhot–Mischler ’13, Hauray–Mischler ’14, Eberle et

al. ’17 (coupling), Delgadino, Gvalani, P. (in preparation).
3 Variational/Γ−convergence approaches (Messer-Spohn 1982, J.C. Carrillo, M. Delgadino, P.,

J. Func. analysis 2020).
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The space Psym((Rd)N )

Due to the indistinguishability assumption on the particles their joint law is invariant under relabelling of
the particles. In probability this is known as exchangeability, i.e., the law νN ∈ Psym

(
(Rd)N

)
.

Question: Given some {ρN}n∈N ∈ Psym((Rd)N ) what does lim
N→∞

ρN mean?

Definition (The limit of of Psym((Rd)N ))

Given a family {ρN}N∈N such that ρN ∈ Psym((Rd)N ) we say that

ρN →X ∈ P(P(Rd)) , as N →∞ ,

if for every n ∈ N we have

ρNn ⇀∗ Xn ∈ Psym
(
(Rd)n

)
, as N →∞ ,

where Xn ∈ Psym
(
(Rd)n

)
is defined by duality as follows

〈Xn, ϕ〉 =

∫
P(P(Rd))

∫
ϕ dρ⊗n dX(ρ) ,

for all ϕ ∈ Cb((Rd)n) and ρNn =
∫
(Rd)N−n ρ

N dxN−n+1...dxN ∈ Psym
(
(Rd)n

)
is the nth

marginal of ρN
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The space Psym((Rd)N )

Another interpretation:

Definition (Empirical measure)

Given some ρN ∈ Psym((Rd)N ) we define its empirical measure ρ̂N ∈ P(P(Rd)) as follows:

ρ̂N := TN#ρN ,

where TN : (Rd)N → P(Rd) is the measurable mapping (x1, . . . , xN ) 7→ N−1
∑N
i=1 δxi .

Futhermore, given a family {ρN}N∈N, we have that ρN →X ∈ P(P(Rd)) if and only if ρ̂N ⇀∗ X ,
i.e tested against Cb(P(Rd)).

Lemma (de Finneti–Hewitt–Savage)

Given a sequence {ρN}N∈N, such that ρN ∈ Psym
(
(Rd)N

)
for every N , assume that the sequence of

the first marginals {ρN1 }N∈N ∈ P(Rd) is tight. Then, up to subsequence, not relabelled, there exists
X ∈ P(P(Rd)) such that ρN →X .

Conclusion: The limit of the space Psym((Rd)N ) is P(P(Rd)). Similarly the limit of Psym((Td)N ) is
P(P(Td)).
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Gradient flows

N -particle free energy, EN : Psym((Rd)N )→ (−∞,+∞]:

EN [ρN ] :=
1

N

(
β−1

∫
(Rd)N

ρN log ρN dx+

∫
(Rd)N

HN (x) dρN (x)

)
,

νN is a gradient flow of EN w.r.t rescaled 2-Wasserstein distance 1√
N
d2 on Psym((Rd)N ) (cf.

Jordan–Kinderlehrer–Otto ’98, Ambrosio–Gigli-Savare ’08).
Mean field free energy EMF : P(Rd)→ (−∞,+∞]:

EMF [ρ] = β−1

∫
Rd
ρ log(ρ) dx+

∫
Rd
V (x) dρ(x) +

1

2

∫∫
Rd×Rd

W (x− y) dρ(y) dρ(x).

ν is a gradient flow of EMF w.r.t 2-Wasserstein distance d2 on P(Rd).

Lemma (Messer–Spohn ’82)

The N -particle free energy EN Γ-converges to E∞ : P(P(Rd))→ (−∞,+∞], where

E∞[X] =

∫
P(Rd)

EMF [ρ] dX(ρ) .

G.A. Pavliotis ICL Diffusive-Mean Field limit Paris 08/03/22 15 / 42



Gradient flow reformulation of the mean field limit

Similar analysis can be carried out for the quotiented system: ẼN , ẼMF with particles living in Td. We
consider the periodic N -particle energy ẼN and the periodic mean field energy ẼMF . Then:

Lemma (Messer–Spohn ’82)

The N -particle free energy ẼN Γ-converges to Ẽ∞ : P(P(Td))→ (−∞,+∞], where

Ẽ∞[X] =

∫
P(Td)

ẼMF [ρ] dX(ν̃) .

As a consequence, if {MN}N∈N is the sequence of minimisers of ẼN (namely the sequence of Gibbs
measures), then any accumulation point X ∈ P(P(Td)) of this sequence is a minimiser of Ẽ∞.

Theorem (Mean field limit, Carrillo–Delgadino–P. J. Func. Analysis 2020)

Fix some t > 0, then, limN→∞ νN (t) = X ∈ P(P(Rd)) Furthermore, we have that the curve
X : [0,∞)→ P(P(Rd)) is a gradient flow of E∞ under the 2-Wasserstein metric D2. Moreover,
Xt = St#X0, where X0 = limN→∞ ρε,N0 and St : P(Rd)→ P(Rd) is the solution semigroup
associated to the nonlinear McKean–Vlasov evolution equation

∂tν = β−1∆ν +∇ · (ν(∇W ? ν +∇V )).
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The diffusive limit ε→ 0

We consider the following system of weakly interacting diffusions with a periodic interaction potential:

dXi,ε
t = −∇V (ε−1Xi,ε

t )− 1

N

N∑
i 6=j
∇W (ε−1(Xi,ε

t −X
j,ε
t )) dt+

√
2β−1 dBit

with W,V chosen to be 1-periodic.
Let ρε,N = Law(X1,ε

t , . . . , XN,ε
t ) and consider the diffusive rescaling

ρε,N (x, t) := ε−NdνN (ε−1x, ε−2t) ∈ P((Rd)N ) .

Interpretation: zooming out in space and looking at sufficiently long (diffusive) times.

Can pass to the limit:

Bensoussan–Lions–Papanicolaou (1978), P.-Stuart (2008) (PDE approach)

Kipnis–Varadhan 1986 (Probabilistic approach)
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The 1d problem (Freidlin, Lifson-Jackson, 1962)

Consider a single particle moving in a periodic potential

dXt = − sin(Xt) dt+
√

2β−1 dWt

From the martingale central limit theorem it follows that the rescaled process converges
weakly to a Brownian motion

εXt/ε2 →
√

2DβWt

where

Dβ =
β−1

Z+ Z−
, Z± =

1

2π

∫ 2π

0

e∓ cos(x) dx.

This formula was obtained by Lifson-Jackson (J. Chem. Phys., 1962) by doing a mean
exit time calculation.

Similar result in the multidimensional case. Upper and lower bounds on the covariance
matrix of the effective Brownian motion

β−1

Z+ Z−
‖ξ‖2 ≤ 〈Dβξ, ξ〉 ≤ β−1‖ξ‖2, ∀ ξ ∈ Rd.

The analysis is based on the study of an appropriate Poisson equation.
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The quotiented N -particle system

dẊi
t = −∇V (Ẋi

t)−
1

N

N∑
i 6=j
∇W (Ẋi

t − Ẋj
t ) dt+

√
2β−1 dḂit ,

Ẋi
t ∈ Td and Ḃit are Td-valued Wiener processes.

This is a reversible process with respect to the N -particle Gibbs measure

MN (x) =
e−H

N (x)∫
TdN

e−HN (y) dy
,

and the law ν̃N evolves according to{
∂tν̃N = β−1∆ν̃N +∇ · (∇HN ν̃N ), (t, x) ∈ (0,∞)× (Td)N

ν̃N (0) = ν̃N0 :=
∑
k∈Zd νN0 (k + x) ∈ P((Td)N )

Periodic rearrangement of νN .
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ε→ 0

Theorem (The diffusive limit)

Consider ρε,N the solution to the rescaled Fokker–Planck equation with initial data ρε,N0 ∈ P((Rd)N ).
Then, for all t > 0 the limit

ρN,∗(t) = lim
ε→0

ρε,N (t)

exists. Furthermore, the curve of measures ρN,∗ : [0,∞)→ Psym((Rd)N ) satisfies the heat equation

∂tρ
N,∗ = ∇ · (Aeff,N∇ρN,∗) ,

with initial data ρN,∗(0) = limε→0 ρ
ε,N
0 and where the covariance matrix is given by the

Kipnis–Varadhan formula

Aeff,N = β−1

∫
(Td)N

(I +∇ΨN (y)) MN (y) dy ,

with MN the Gibbs measure of the quotiented N particle system and ΨN :
(
Td
)N → (

Rd
)N the unique

mean zero solution to the associated corrector problem

∇ · (MN∇ΨN ) = −∇MN .

The diffusive limit is affected by the properties of the quotiented system on the torus!
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N →∞+ ε→ 0?

Question: limN→∞ ρN,∗ =?.
We already know ρε,N → ρε,⊗N , N →∞ where ρε solves the rescaled McKean–Vlasov equation.
Another question : limε→0 ρε,⊗N →?.

ρε,N ρN,∗

ε→ 0

ρε,⊗N

N →∞
?

N →∞

ε→ 0

Theorem (Delgadino–Gvalani–P. ’20)

Assume that the quotiented system has a phase transition at some βc. Then for β < βc

lim
N→∞

lim
ε→0

ρε,N = lim
ε→0

lim
N→∞

ρε,N .

On the other hand if β > βc, there exists initial data ρε,⊗N0 such that

lim
N→∞

lim
ε→0

ρε,N 6= lim
ε→0

lim
N→∞

ρε,N .
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Phase transitions

Consider the periodic McKean–Vlasov equation:{
∂tν̃ = β−1∆ν̃ +∇ · (ν̃(∇W ? ν̃ +∇V )) (t, x) ∈ (0,∞)× Td

ν̃(0) = ν̃0 =
∑
k∈Zd ν0(k + x) .

Definition (Phase transition)

The periodic mean field McKean–Vlasov equation is said to undergo a phase transition at some
0 < βc <∞ if

1 For β < βc, there exists a unique steady state.

2 For β > βc, there exist at least two steady states.

The temperature βc is referred to as the point of phase transition or the critical temperature.
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Example (noisy Kuramoto model)

Let d = 1, W = − cos(2πx), and V = 0. Then for β ≤ 2, ν̃∞ ≡ 1 is the unique minimiser of
ẼMF and steady state. For β > 2, the steady states are given by ν̃∞ ≡ 1 and the family of
translates of some measure ν̃min

β . Moreover for β > 2, ν̃min
β (and its translates) are the only

minimisers of the periodic mean field energy ẼMF . Thus, βc = 2 is the critical temperature.

see Carrillo–Gvalani–P.–Schlichting, ARMA, 235 (2020) 635-690 for a detailed study.
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H-stability

Fourier representation f̃(k) = 〈f, wk〉L2(Td) with k ∈ Zd

A function W ∈ L2(T d) is H-stable, W ∈ Hs, if

W̃ (k) = 〈W,wk〉L2(Td) ≥ 0, ∀k ∈ Zd ,

We can characterize stationary states by studying the Kirkwood-Monroe fixed point
mapping

Fκ(%) = %− T % = %− 1

Z(%, κ)
e−βκW?% , with Z(%, κ) =

∫
Td

e−βκW?% dx .

The uniform distribution is always a stationary state for the McKean-Vlasov equation on
the torus.

W ∈ Hs is a necessary condition for the existence of nontrivial steady states.
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Nontrivial solutions to the stationary McKean–Vlasov equation?

Example: Kuramoto model: W (x) = −
√

2
L

cos(2πx/L)

0 2 4 6 8 10
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⇒ 1-cluster solution and uniform state %∞.
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ρε,N νN

εNdρε,N (ε2s, εy)

ε−NdνN (ε−2t, ε−1x)

ρε,⊗N

N →∞

ν⊗N

N →∞

εdρε(ε2s, εy)

ε−dν̃(ε−2t, ε−1x)

ν̃N

P.R.

ν̃⊗N

N →∞

P.R.

Figure: A schematic of the notation. The P.R. denotes periodic rearrangement.
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ρε,N (t) ρN,∗(t)

ε→ 0

Xε(t)

N →∞
X2(t)

X1(t)

N →∞

ε→ 0

Question: Is X1 = X2?

Non-commutativity observed numerically in Gomes–P. ’18 based on numerics in slightly
different setting (Dasai-Zwanzing in a two-scale confining potential).
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N →∞ then ε→ 0

Theorem (Delgadino–Gvalani–P. ’20)

Consider the set of initial data given by {ρε0}ε>0 ⊂ P(Rd), and consider the periodic rearrangement at
scale ε > 0 , i.e.

ν̃ε0(A) = εd
∑
k∈Zd

ρε0(ε(A+ k)) for ε > 0 .

Assume that there exists C > 0, p > 1 and ν̃∗ ∈ P(Td) such that ν̃ε(t), with initial data ν̃ε0(x), satisfies

sup
ε>0

d2
2(ν̃ε(t), ν̃∗) ≤ Ct−p .

Then,
lim
ε→0

d2
2(Sεt ρ

ε
0, S
∗
t ρ
∗
0) = 0,

where Sεt is the solution semigroup associated to the rescaled PDE on Rd, ρ∗0 ∈ P(Rd) is the weak-∗ limit
of ρε0, and S∗t is the solution semigroup of the heat equation

∂tρ = ∇ · (Aeff
∗ ∇ρ),

where the covariance matrix

Aeff
∗ = β−1

∫
Td

(I +∇Ψ∗(y)) dν̃∗(y) .
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N →∞ then ε→ 0

Theorem (Delgadino–Gvalani–P. ’20)

Ψ∗ : Td → Rd is the solution to the associated corrector problem

∇ · (ν̃∗∇Ψ∗) = −∇ν̃∗.

Furthermore, assume that Xε(t) is the mean field limit and that limN→∞ ρε,N0 = Xε
0 = δρε0 . Then it

holds that:

X1(t) = lim
ε→0

lim
N→∞

ρε,N = lim
ε→0

X(t)ε = S∗t #X0 ,

where X0 = δρ∗0 .
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ε→ 0 then N →∞

Theorem (Delgadino–Gvalani–P. ’20)

Assume that the periodic mean field energy ẼMF admits a unique minimiser ν̃min, then we have that
ρN,∗ satisfies, for any fixed t > 0,

lim
N→∞

ρN,∗(t) = X2(t) = Smin
t #X0,

where X0 ∈ P(P(Rd)) is the limit of ρN,∗(0), and Smin
t : P(Rd)→ P(Rd) is the solution semigroup

of the heat equation
∂tρ = ∇ · (Aeff

min∇ρ),

where the covariance matrix

Aeff
min = β−1

∫
Td

(I +∇Ψmin(y)) dν̃min(y) ,

with Ψmin : Td → Rd, the solution to the associated corrector problem

∇ · (ν̃min∇Ψmin) = −∇ν̃min .

It follows then, that for any fixed t > 0, the solution ρε,N (t) satisfies

X2(t) = lim
N→∞

lim
ε→0

ρε,N (t) = lim
N→∞

ρN,∗(t) = Smin
t #X0 .
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Non-commutativity

The limit X1(t) sees the long time behaviour of ν̃ and thus steady states.

The limit X2(t) sees minimisers of ẼMF .

Thus we can break commutativity ahead of the phase transition.

Example (A biased Kuramoto model)

Consider the model with V = −η cos(2πx),W = − cos(2πx) with η ∈ (0, 1). Then the mean field
model on the torus has a phase transition at some 0 < βc <∞. It has at least two steady states for
β > βc, ν̃∗ and ν̃min the minimiser of ẼMF .

Additionally, for β > βc and ρε,N0 = (ρε0)⊗N such that ν̃∗ =
∑
k∈Zd εdρε0(εx) we have that

lim
ε→0

lim
N→∞

ρε,N (t) = X1(t) = S∗t #X0 6= Smin
t #X0 = X2(t) = lim

N→∞
lim
ε→0

ρε,N (t) .
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Lemma

Consider the quotiented Kuramoto model for a fixed η ∈ (0, 1). Then there exists a β = βc
such that:

For β < βc, there exists a unique steady state given by

ν̃min(x) = Z−1
mine

amin cos(2πx) , Zmin =

∫
T
ea

min cos(2πx) dx , (4)

for some amin = amin(β), amin > 0, which is the unique minimiser of the periodic mean
field energy ẼMF .

For β > βc, there exist at least 2 steady states given by

ν̃min(x) = Z−1
mine

amin cos(2πx) , Zmin =

∫
T
ea

min cos(2πx) dx , (5)

ν̃∗(x) = Z−1
∗ ea

∗ cos(2πx) , Z−1
∗ =

∫
T
ea
∗ cos(2πx) dx , (6)

where a∗ < 0 < amin and both constants depend on β. Here ν̃min is the unique
minimiser and ν̃∗ is a non-minimising critical points of the periodic mean field energy
ẼMF . Moreover, a∗ 6= −amin.

G.A. Pavliotis ICL Diffusive-Mean Field limit Paris 08/03/22 32 / 42



0 20 40 60 80 100

-20

0

20

40

60

80

100

120

140

160

Figure: amin (solid line) and a∗ (dotted line) for η = 0.5. The two effective diffusion
coefficients are Aeff

∗ = β−1

I0(−a∗)2 and Aeff
min = β−1

I0(amin)2
.
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Sketch of proof for N →∞ followed by ε→ 0

Pass to the mean field limit to obtain Xε(t).

For the associated mean field SDE on the torus consider a moving corrector problem:

∇ · (µ̃ε(t)∇χ) = −∇(µ̃ε) , µ̃ε(t) ∼ exp(−β(W ? ν̃(t)− V ))

and obtain time-dependent estimates:

‖χi‖Cm(Td) . 1

‖∂tχi‖Cm(Td) .
k∑

m=1

dm2 (ν̃(t), ν̃∗) .

Using coupling techniques (a’ la Eberle et al.) prove an initial data dependent version of the
martingale CLT.

Pass to the limit as ε→ 0.
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Sketch of proof for ε→ 0 followed by N →∞

Need to pass to the limit in the diffusion matrix Aeff,N:

Aeff,N = β−1

∫
(Td)N

(I +∇ΨN (y)) MN (y) dy .

Key idea MN ≈MN−1(MN )1 as N →∞ + natural uniform in N estimate on ΨN :∫
(Td)N

(I +∇ΨN (y)) (MN −MN−1(MN )1) dy

=

∫
(Td)N

(I +∇ΨN (y))

(
MN

MN−1
− (MN )1

)
MN−1 dy

≤
∥∥∥I +∇ΨN

∥∥∥
L2(MN−1)

∥∥∥∥( MN

MN−1
− (MN )1

)∥∥∥∥
L2(MN−1)

.

The function MN/(MN−1) is symmetric in all but one of its variables. Use techniques due to Lions
pass to N →∞ on C(P(Td)). Similarly pass to N →∞ to obtain
MN−1 → δν̃min ∈ P(P(T)d).

Enough information to pass to the limit in the PDE.
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Abstract In this article, we study the mean field limit of weakly interacting diffusions for
confining and interaction potentials that are not necessarily convex. We explore the relation-
ship between the large N limit of the constant in the logarithmic Sobolev inequality (LSI)
for the N -particle system and the presence or absence of phase transitions for the mean field
limit. The non-degeneracy of the LSI constant is shown to have far reaching consequences,
especially in the context of uniform-in-time propagation of chaos and the behaviour of equi-
librium fluctuations. Our results extend previous results related to unbounded spin systems
and recent results on propagation of chaos using novel coupling methods. As incidentals,
we provide concise and, to our knowledge, new proofs of a generalised form of Talagrand’s
inequality and of quantitative propagation of chaos by employing techniques from the theory
of gradient flows, specifically the Riemannian calculus on the space of probability measures.

1. Introduction. Interacting particle systems have attracted a lot of attention in recent
years since they appear in diverse areas ranging from plasma physics and galactic dynamics
to machine learning and optimization. For systems of identical (or exchangeable) particles
in which the pair-wise interactions scale like the inverse of the number of particles, it is
possible to pass to the mean field limit and obtain a coarse-grained description of the system
via a nonlinear nonlocal PDE that governs the evolution of the one-particle density. In this
paper, we consider systems of weakly interacting diffusions driven by pair-wise interactions,
confinement and independent Brownian motions (see (2.1) ). In this case the mean field PDE
is the so-called McKean–Vlasov equation.

A natural problem that one would like to address is how to obtain sharp quantitative esti-
mates on the rate at which the empirical measure of the particle system converges to the mean
field limit, as the number of particles N goes to infinity. When considering arbitrarily long
time scales, this problem is intimately connected to the rate of convergence to steady states
as time t goes to infinity. For the study of such quantitative results, a crucial role is played
by the Poincaré (PI) and logarithmic Sobolev (LSI) inequalities. Our focus in this paper is
to elucidate the connection between the validity of the LSI for the N -particle Gibbs measure
uniformly in the number of particles N and the properties of the mean field limit. We es-
tablish connections with uniform-in-time propagation of chaos, (non-)uniqueness of steady
states of the mean field equation, exponential convergence to equilibrium, and the behaviour

MSC2020 subject classifications: Primary 60K35, 82B26; secondary 39B62.
Keywords and phrases: Interacting particle systems, log Sobolev inequalities, phase transitions, propagation

of chaos.
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We consider {Xi
t}i=1,...,N ⊂ Rd, the positions of N indistinguishable interacting particles at

time t ≥ 0, satisfying the following system of SDEs:
dXi

t = −∇V (Xi
t) dt− 1

N

N∑
j=1

∇1W (Xi
t , X

j
t ) dt+

√
2β−1dBit

Law(X1
0 , . . . , X

N
0 ) = ρ⊗Nin ∈ P2,sym((Rd)N ),

(7)

where V : Rd → R, W : Rd × Rd → R, β−1 > 0 is the inverse temperature,
Bit, i = 1, . . . , N are independent d-dimensional Brownian motions, and the initial position of
the particles is i.i.d with law ρin.
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Assumption

The confining potential V is lower semicontinuous, bounded below, KV -convex for some
KV ∈ R and there exists R0 > 0 and δ > 0, such that V (x) ≥ |x|δ for |x| > R0.

Assumption

The interaction potential W is lower semicontinuous, KW -convex for some KW ∈ R, bounded
below, symmetric W (x, y) = W (y, x), vanishes along the diagonal W (x, x) = 0, and there
exists C such that

|∇1W (x, y)| ≤ C(1 + |W (x, y)|+ V (x) + V (y)) (8)
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Theorem

Under A1,A2, we have
lim sup
N→∞

λNLSI ≤ λ∞LSI. (9)

Moreover, if the mean field energy EMF : P(Ω)→ R ∪ {+∞} given by

EMF [ρ] := β−1

∫
Ω

ρ log(ρ) dx+
1

2

∫
Ω2

W (x, y) dρ(x) dρ(y) +

∫
Ω

V (x) dρ(x) , (10)

admits a critical point that is not a minimiser, then λ∞LSI = 0, and there exists C > 0 such that

λNLSI ≤
C

N
. (11)
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We often need to learn parameters in SDEs from data.

For multiscale diffusions standard inference methodologies are biased due to the
incompatibility between the homogenized model and the data at small scales (P.-Stuart
’07, P.-Papavasiliou-Stuart ’09).

Maximum likelihood, together with appropriate filtering/subsampling of the data leads to
unbiased estimators (Abdulle et al 2021).

Alternative approach based on eigenfunction estimators.

Goal: learn parameters in (multiscale) mean field SDEs using data from single
trajectories.

Fluctuations around the mean field limit play in important role in the analysis of these
estimators.
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Drift estimation of multiscale diffusions based on filtered data A Abdulle, G Garegnani,
GA Pavliotis, AM Stuart, A Zanoni Foundations of Computational Mathematics, 1-52 4
2021

Parameter Estimation for the McKean Stochastic Differential Equation L Sharrock, N
Kantas, P Parpas, GA Pavliotis arXiv preprint arXiv:2106.13751 2021

Eigenfunction martingale estimating functions and filtered data for drift estimation of
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(2021).
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Eigenfunction martingale estimator

Problem: estimate parameters of interacting particle systems given discrete observations of one
single particle

Idea: employ martingale estimating functions based on eigenfunctions and eigenvalues of the
linearized generator of the mean field limit

Example: bistable confining potential and quadratic interaction

M = 2000

Top of fig:bistable: evolution of the estimator varying the number of observations M for
N = 25 and N = 250. the estimator approaches the correct drift coefficient α as the number
of observations M increases.
Bottom of figure: scatter plot of the estimations obtained from each particle with M = 2000
observations and we can see that they are concentrated around the exact drift coefficient α.
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