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Abstract

The objective of this article is to analyse the statistical behaviour of a large
number of weakly interacting diffusion processes evolving under the influence of a
periodic interaction potential. We focus our attention on the combined mean field
and diffusive (homogenisation) limits. In particular, we show that these two limits
do not commute if the mean field system constrained to the torus undergoes a
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Abstract In this paper, we study the combined mean field and homogenization limits
for a system of weakly interacting diffusions moving in a two-scale, locally periodic
confining potential, of the form considered in Duncan et al. (Brownian motion in
an N-scale periodic potential, arXiv:1605.05854, 2016b). We show that, although
the mean field and homogenization limits commute for finite times, they do not, in
general, commute in the long time limit. In particular, the bifurcation diagrams for the
stationary states can be different depending on the order with which we take the two
limits Furthermore we construct the bifurcation dlagram for the stationary McKean—

e e e homogenization limit.
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Outline

0 Problems & Motivation
@ Weakly Interacting Diffusions
@ Applications

e Two distinguished limits
@ The mean-field limit N — 400

9 Qualitative properties
@ The space Psym ((R?)™) and its limit
@ Free energies, ['-convergence, and gradient flows
@ The diffusive limite — 0
@ The quotiented process and phase transitions
@ Summary

e The joint limits
@ The limit N — oo followed by ¢ — 0
@ The limit ¢ — 0 followed by N — oo
@ Non-commutativity

e Parameter Estimation for Mean Field SDEs
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Weakly Interacting Diffusions

N indistinguishable interacting particles in 2 = R? etc.
X{ € Q: location of the i particle,i = 1,..., N.
X are i.i.d random variables with law vy € P(R%).

Bj B

MT NTIVW(XE - X7) t

X; «— ' X]

v v

—VV(X}) —vv(xi)
. ) 1 N _ . .
dX} = -VV(X]) - + > OVW(Xi - X])dt+ /28" 1dB],
i

where V, W € C? (]Rd), 1-periodic, even, Bz independent Wiener processes.
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Applications and Extensions

Some applications:
@ Plasma Physics
Stellar Dynamics
Collective behaviour of multiagent systems

Synchronization

Opinion Dynamics
@ Algorithms for sampling/optimization’
Extensions:
@ Inertia, e.g. underdamped Langevin dynamics.
@ Colored, non-Gaussian, multiplicative noise?.

@ non-Markovian dynamics, e.g. the generalized Langevin equation’ .

10n stochastic mirror descent with interacting particles: convergence properties and variance
reduction (with A. Borovykh, N. Kantas, P. Parpas). Physica D (2021).
2The Desai-Zwanzig mean field model with colored noise (with S.N. Gomes and U. Vaes). SIAM J.
MMS, 18(3) pp. 1343-1370 (2020)
3Mean field limits for non-Markovian interacting particles: convergence to equilibrium, GENERIC
Sformalism, asymptotic limits and phase transitions (with M. H. Duong). Comm. Math. Sci. (2018).
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ARTICLE INFO ABSTRACT
Article history: An open problem in optimization with noisy information is the computation of an exact minimizer that
Received 1 July 2020 is independent of the amount of noise. A standard practice in stochastic approximation algorithms is to
Received in revised form 27 October 2020 use a decreasing step-size. This however leads to a slower convergence. A second alternative is to use
Qi;?lz';li 3[{;?:%’]2&%2“13 2021 a fixed step-size and run independent replicas of the algorithm and average these. A third option is to
v run replicas of the algorithm and allow them to interact. It is unclear which of these options works best.
Keywords: To address this question, we reduce the problem of the computation of an exact minimizer with noisy
Mirror descent gradient information to the study of stochastic mirror descent with interacting particles. We study the
Interacting agents convergence of stochastic mirror descent and make explicit the tradeoffs between communication and
Variance reduction variance reduction. We provide theoretical and numerical evidence to suggest that interaction helps

to improve convergence and reduce the variance of the estimate.
©2021 Elsevier B.V. All rights reserved.

1. Introduction Descent (SMD) (see [5]). SMD can be used to solve constrained
and unconstrained problems, and is known to be an optimal
Paris 08/03/22 7142




The Kuramoto model: W (z) = f\/% cos (27r%) with Q = T (the quotiented process)
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@ The Hamiltonian can be written as

1
Hy(z1,...,2N) = ZCOS (2n(z xj)):—ﬁZSiSj7 1)
0,7

where S; = (cos(27z;), sin(27x;)).

@ The corresponding Gibbs measure is

1 - x - x
po(dx) = ——e FOHNCINN (dX),  Zng = / e POINGI Ny (dx). ()
N,6 N
@ Let F € C*(T), denote by pfY (dx), write W (x) = — cos(2mx) the empirical measure

and apply 1t6’s formula to obtain

[P0 )~ [ Fooud ax)

=0 [ [ P eow -yl () (ay) ds

= [ o i) s+ M),

@ where M N F( ) isa contmuous martingale with quadratic variation
(Mn,F) fo Jo(F 2ul (dx) ds.

G.A. Pavliotis ICL Diffusive-Mean Field limit Paris 08/03/22 9/42



By Doob’s martingale inequality we have that

f( sup MN,F<t>) < (Mwp)(0) < IFlE~

t€[0,T)

Therefore, the stochastic term vanishes in the limit as N — 400 so that the limit of the
empirical measure, if it exists, is deterministic.

We study the limit in the space C°([0, T']; M1 (T)) where M (T) is the space of
probability measures on T equipped with the topology of weak convergence.

Proving tightness of the family of empirical (probability) measures, assuming chaotic
initial conditions and proving uniqueness of the limiting equation, we can pass rigorously
to the limit to obtain the mean field PDE

_, 0% 1o} ,
=B S 0 (W xp)p), ©)

where u:(dz) = p(t, z) dx.
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The Fokker—Planck equation

@ Hamiltonian: HY (x1,...,zx) := ﬁ i Wi —zj) + 35, Vi)

@ The generator of the process is
L=-VHYN .V +87'A.

@ Associated Fokker—Planck/forward Kolmogorov equation for the law vV = Law(th, S ,XtN ):

N =8TAVN £V (VHNUN), (t,2) € (0,00) x (RHN
vN ) = =8N e P(RHY)

@ Initial data i.i.d.

ve-Mean Field limit Paris 08/03/22 11742



The mean-field limit N — +o0

Consider the empirical measure : (V) := % vazl 6X§ € P(RY). Easier to study E [V(N)}:

Theorem (The mean-field limit/propagation of chaos)
As N — oo, E [I/(N)] converges in weak-x to v(t,dx) = v(t, x) dz, which solves (weakly):

v =F"1Av+ V. W(VW xv 4+ VV)) (McKean—Vlasov equation)

with initial datum vy € P(R®).

N

Another interpretation: vV — v®N as N — oo.

@ The McKean-Vlasov equation:

@ Classical: McKean ’66, Oelschliger 84, Girtner ’88, Sznitman *91 (coupling)

@ Rates of convergence: Sznitman 91, Mouhot—Mischler 13, Hauray—Mischler " 14, Eberle et
al. ’17 (coupling), Delgadino, Gvalani, P. (in preparation).

© Variational/I'—convergence approaches (Messer-Spohn 1982, J.C. Carrillo, M. Delgadino, P.,
J. Func. analysis 2020).

ve-Mean Field limit Paris 08/03/22 12/42



The space Psym ((RY)™)

Due to the indistinguishability assumption on the particles their joint law is invariant under relabelling of
the particles. In probability this is known as exchangeability, i.e., the law vV € Psym ((]Rd)N),
Question: Given some {p™V },,en € Psym ((R?)N) what does Nlim o mean?

— 00

Definition (The limit of of Psym (R?)V))

Given a family {p™ } e such that p?¥ € Psym ((RY)NV) we say that
oV = X e P(P(RY)), asN — oo,

if for every n € N we have

N = X" € Poym (RY™), as N — oo,

where X" € Psym ( (Rd)”) is defined by duality as follows

(X", ) =/ /eadp@n dX(p),
P(P(RY))

for all p € Cp((R?)™) and p = f(Rd)N,n oY dzN_nt1...dzN € Psym (R is the n®
marginal of p™v

ve-Mean Field limit Paris 08/03/22 13742



The space Psym ((RY)™)

Another interpretation:

Definition (Empirical measure)

Given some p™V € Psym ((RY)™V) we define its empirical measure gV € P(P(R?)) as follows:
N = Tn#o™

where TV : (RH)N — P(R?) is the measurable mapping (z1, ..., zn) = N"L N 6,

Futhermore, given a family {pV } ;yen, we have that N — X € P(P(R?)) if and only if &V —* X,
i.e tested against Cy (P (R%)).

Lemma (de Finneti-Hewitt—Savage)

Given a sequence {p™ } nen, such that p¥ € Psym (RN for every N, assume that the sequence of

the first marginals {pf’ Ynen € P(RY) is tight. Then, up to subsequence, not relabelled, there exists
X € P(P(RY)) such that pN — X.

Conclusion: The limit of the space Psym ((R?)Y) is P(P(R?)). Similarly the limit of Psym ((T4)N) is
P(P(T4)).

Diffusive-Mean Field limit Paris 08/03/22 14742



Gradient flows

N-particle free energy, EV : Psym ((R*)N) — (—o0, +00]:

1 _
EN[pN] = </3 ! /(]Rd)NPN log p™ da + /(W)N HN (x) dp%)) :

is a gradient flow of EN w.r.t rescaled 2-Wasserstein distance ﬁdz on Psym (RN (cf.

N

Jordan—Kinderlehrer—Otto "98, Ambrosio—Gigli-Savare *08).
Mean field free energy Epsp : P(RY) — (—o0, +o0]:

Erirlel =57 [ ptoa(p) ot [ V@ o)+ [ W) dow) dpe).

v is a gradient flow of E s w.r.t 2-Wasserstein distance dz on P (R%).
Lemma (Messer—Spohn ’82)

The N-particle free energy EN T-converges to E™ : P(P(R%)) — (—o0, +00], where

E¥X] = [ Ewrle) X (o).
P®)

Diffusive-Mean Field limit Paris 08/03/22
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Gradient flow reformulation of the mean field limit

Similar analysis can be carried out for the quotiented system: EN | Eprp with particles living in T, We
consider the periodic N-particle energy £V and the periodic mean field energy E ;. Then:

Lemma (Messer—Spohn ’82)
The N-particle free energy EN T-converges to E> : P(P(T%)) = (—oo0, +00], where

(X = / Earrlp) dX ().
P(Td)

As a consequence, if {MnN } NeN is the sequence of minimisers of EN ( namely the sequence of Gibbs
measures), then any accumulation point X € P(P(T®)) of this sequence is a minimiser of Eee.

Theorem (Mean field limit, Carrillo-Delgadino—P. J. Func. Analysis 2020)

Fix some t > 0, then, limn _, 00 VN (t) = X € P(P(R?)) Furthermore, we have that the curve
X :[0,00) = P(P(R?)) is a gradient flow of E™ under the 2-Wasserstein metric Da. Moreover,
X = St# X0, where Xo = limy_, o pS‘N and Sy : 'P(Rd) — 'P(Rd) is the solution semigroup
associated to the nonlinear McKean—Vlasov evolution equation

O =B"1Av+ V- W(VW xv+ VV)).

ve-Mean Field limit Paris 08/03/22
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The diffusive limit e — 0

We consider the following system of weakly interacting diffusions with a periodic interaction potential:
) ) 1 Y ) X .
dXF = —VV(ETIXPS) = = DO VW(ET X = XP9) dt + /2571 dB;
i#]
with W, V' chosen to be 1-periodic.
Let p=N = Law(th’E, A XtN’E) and consider the diffusive rescaling
ooV (x,t) = e NN (e 1z, e728) € P(RDHY).

Interpretation: zooming out in space and looking at sufficiently long (diffusive) times.

W(z/e)

VAMAWAMAAMEMAMAMAMMA

€

Can pass to the limit:
@ Bensoussan—Lions—Papanicolaou (1978), P.-Stuart (2008) (PDE approach)
@ Kipnis—Varadhan 1986 (Probabilistic approach)

G.A. Pavliotis ICL
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The 1d problem (Freidlin, Lifson-Jackson, 1962)

@ Consider a single particle moving in a periodic potential
dXt = — sin(Xt) dt —+ \/ 25_1 th

@ From the martingale central limit theorem it follows that the rescaled process converges
weakly to a Brownian motion

Xy — \/2Ds Wy

@ where

/8_1 1 /27\' F cos(x)
Ds = Zy = — dz.
T zizo FT o), € v

@ This formula was obtained by Lifson-Jackson (J. Chem. Phys., 1962) by doing a mean

exit time calculation.

@ Similar result in the multidimensional case. Upper and lower bounds on the covariance
matrix of the effective Brownian motion

< (Dg&, &) < BH€]1?, VEeR™

@ The analysis is based on the study of an appropriate Poisson equation.

G.A. Pavliotis ICL Diffusive-Mean Field limit Paris 08/03/22 18742



The quotiented /N-particle system

N
dXf = -VV(X) - & STUW(X] — X)) dt + /2871 dB},
i#]
Xt‘ € T4 and B,’é are T%-valued Wiener processes.
This is a reversible process with respect to the /NV-particle Gibbs measure
e—HY ()

f e*HN(y) dy7
TdN

and the law 7™V evolves according to

{&ﬁN =B~ 1AGN + V- (VHNSN), (t,2) € (0,00) x (TH)N
N0) =5 =3 cpa vV (k+2) € P(THY)

Periodic rearrangement of vV .

ve-Mean Field limit Paris 08/03/22
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e—0

Theorem (The diffusive limit)

Consider p*N the solution to the rescaled Fokker—Planck equation with initial data pg’N € P(RHN).
Then, for all t > 0 the limit

PN (1) = Tim oo (1)
e—0
exists. Furthermore, the curve of measures p™¥* : [0, 00) — Psym (RY)N) satisfies the heat equation
atpN,* —-Vv- (Aeff,vaN,*) ,

with initial data p™-*(0) = lime_y0 pS’N and where the covariance matrix is given by the
Kipnis—Varadhan formula

AT =571 | T VN W) M) dy,

with M the Gibbs measure of the quotiented N particle system and N (Td) N (Rd) N the unique
mean zero solution to the associated corrector problem

V- (MyVIN) = —VMy .

The diffusive limit is affected by the properties of the quotiented system on the torus!

Diffusive-Mean Field limit Paris 08/03/22 20/42



N — oco+¢e— 07

Question: lim pr_, o pVo* =2.
We already know p= &V — p&®N
Another question : lim. g p='®N —?.

e—0

e, N
N — oo‘
PE’®N

Theorem (Delgadino—Gvalani—P. *20)
Assume that the quotiented system has a phase transition at some B¢. Then for B < B¢

lim lim p=Y = lim lim p=V.
N—o00e—0 e—=0 N—oo

On the other hand if B > P, there exists initial data pg’®N such that

lim lim p=~ # lim lim p=V.
N—o00e—0 e—=0 N—oo

N — oo where p® solves the rescaled McKean—Vlasov equation.

-Mean Field limit

Paris 08/03/22

21/42



Phase transitions

Consider the periodic McKean—Vlasov equation:

{aﬂz =B 1AD+ V- (H(VW i+ VV)) (t,z) € (0,00) x T?
17(0) ER ZkeZd l/()(k =+ 1‘) .

Definition (Phase transition)
The periodic mean field McKean—Vlasov equation is said to undergo a phase transition at some
0 < Be < c0if

@ For 8 < [, there exists a unique steady state.

@ For B > ., there exist at least two steady states.

The temperature (3. is referred to as the point of phase transition or the critical temperature.

-Mean Field limit Paris 08/03/22
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Example (noisy Kuramoto model)

Letd=1,W = — cos(2nmz), and V = 0. Then for 8 < 2, Uoo = 1 is the unique minimiser of
Enr and steady state. For 8 > 2, the steady states are given by Voo = 1 and the family of

translates of some measure 17;}““. Moreover for 8 > 2, g™ (and its translates) are the only
minimisers of the periodic mean field energy Enrr. Thus, 3. = 2 is the critical temperature.

see Carrillo-Gvalani—P—Schlichting, ARMA, 235 (2020) 635-690 for a detailed study.

G.A. Pavliotis ICL Diffusive-Mean Field limit Paris 08/03/22 23/42



H -stability

Fourier representation f (k) = (f, W) 12 (pdy With k € A
@ A function W € L*(T%)is H-stable, W € H.,, if

W (k) = (W,wi) p2(ray > 0, VkeZ?,

@ We can characterize stationary states by studying the Kirkwood-Monroe fixed point
mapping

Feo(o)=0—To=0— e PEWre - ith  Z(p, k) = / e BrWre qq

Z(Qv H) Td

@ The uniform distribution is always a stationary state for the McKean-Vlasov equation on
the torus.

@ W € H, is anecessary condition for the existence of nontrivial steady states.

G.A. Pavliotis ICL Diffusive-Mean Field limit Paris 08/03/22 24742



Nontrivial solutions to the stationary McKean—Vlasov equation?

Example: Kuramoto model: W (x) = —\/% cos(2mx/L)

0.03 025
0.025
02
0.02
L 0015 015
< oot E
I
; 0.1
= 0.005
e 005
-0.005
-0.01 o
0 2 4 6 8 10 5 0 5
" e

= 1-cluster solution and uniform state 9o .
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N — o0 N — oo N — oo

e (e 2t e )

Figure: A schematic of the notation. The P.R. denotes periodic rearrangement.
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p= N (t) PN (t)
N — oo{ ;N — o0
Xe(t) X (t)
\/v X1(t)
e—0

@ Question: Is X1 = X?

@ Non-commutativity observed numerically in Gomes—P. *18 based on numerics in slightly
different setting (Dasai-Zwanzing in a two-scale confining potential).

G.A. Pavliotis ICL Diffusive-Mean Field limit Paris 08/03/22 27/42



N — ocothene — 0

Theorem (Delgadino—Gvalani—P. *20)

Consider the set of initial data given by {p§}e>0 C P(R?), and consider the periodic rearrangement at
scalee > 0, i.e.
75(A) = > pi(e(A+ k) fore>0.
kezd
Assume that there exists C > 0, p > 1 and * € P(T?) such that ¢ (t), with initial data 7§ (z), satisfies
sup d3(#°(t),0*) < Ct7P.
e>0
Then,
lim d5 (S5 p§, Sipg) =0
e 3(S% 06, ¢ Po) )
where S is the solution semigroup associated to the rescaled PDE on R, 284S P(R?) is the weak- limit
of pg, and S} is the solution semigroup of the heat equation
dp=V-(ASVp),

where the covariance matrix

A =571 / (I + V¥ (y)) i (y).
Td

ve-Mean Field limit Paris 08/03/22 28742



N — ocothene — 0

Theorem (Delgadino—Gvalani—P. *20)
U* : T4 — R? js the solution to the associated corrector problem
V- (0*VU*) = VD™,

Furthermore, assume that X ¢ (t) is the mean field limit and that impn _, oo pS’N = X§ =0p. Then it
holds that:

X1(t) = lim lim p=V = lim X (¢)* = S;#Xo,
e—0

e—=0 N—oo

where X = 693'

Diffusive-Mean Field limit Paris 08/03/22 29/42



e — 0then N — o

Theorem (Delgadino—Gvalani—P. *20)

Assume that the periodic mean field energy Enp admits a unique minimiser D™, then we have that

p™N* satisfies, for any fixed t > 0,
lim p™* (1) = X (t) = SP™# X0,
N—o0
where Xo € P(P(RY)) is the limit of p™-*(0), and S& : P(RY) — P(R?) is the solution semigroup
of the heat equation
Op=V- (Afr%nvp)’

where the covariance matrix
A =7 [ @+ ey aming),
with ¥™in . Td 5 RA the solution to the associated corrector problem
V. (pminggming = _ypmin
It follows then, that for any fixed t > 0, the solution p*N (t) satisfies

Xo(t) = lim lim p=V(t) = lim p™*(t) = SMN4 X, .
2(t) = lim lim p=7(t) = lim p™*(t) = S #Xo

ve-Mean Field limit Paris 08/03/22 30/42



Non-commutativity

@ The limit X 1 (¢) sees the long time behaviour of & and thus steady states.
@ The limit X 2(t) sees minimisers of Ep .

Thus we can break commutativity ahead of the phase transition.

Example (A biased Kuramoto model)

Consider the model with V- = —ncos(2mwz), W = — cos(2wz) withn € (0, 1). Then the mean field
model on the torus has a phase transition at some 0 < B¢ < oo. It has at least two steady states for
B > Be, U* and D™ the minimiser ofEMF

Additionally, for B > . and pg‘N = (p5)®N such that * = > kezd e p§(ex) we have that

lim hm pEN () = X1 (t) = SF#Xo # SMNE Xy = Xo(t) = llm lim p= ™ (1) .

e—->0N — o0 e—=0

Diffusive-Mean Field limit Paris 08/03/22
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Lemma

Consider the quotiented Kuramoto model for a fixed n € (0, 1). Then there exists a 3 = (.
such that:
@ For B < B, there exists a unique steady state given by

~min 1 _a™i® cos(2ma a™i? cos(2ma
v ( ) me ( ) ) Zmin = /6 ( )d-T, (4)
T
for some a™"

" =a""(8),a min > 0, which is the unique minimiser of the periodic mean
field energy Enp.

@ For B > f., there exist at least 2 steady states given by

~min

=1 _a™"cos(2nz) a™" cos(2m)
v (ZI)) - Zmin6 ’ Zmin = (& dzx
T

% Z;l _ /ea* cos(2mx) dx, (6)
T

o (l’) _ Z:lea cos(2mx) ’
and both constants depend on [3. Here ™™ is the unique

minimiser and U™ is a non- mznzmlsmg critical points of the periodic mean field energy
Enr. Moreover, a* #* —a™™"

where a* < 0 < a™®

Diffusive-Mean Field limit
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Sketch of proof for N — oo followed by e — 0

@ Pass to the mean field limit to obtain X ©(¢).
@ For the associated mean field SDE on the torus consider a moving corrector problem:

V(@ (0)VX) = =V(a%), a°(t) ~exp(=BW x o(t) = V)

and obtain time-dependent estimates:
||XiHcm(1rd) <1
k
100l gom ray < S dF (5 (1), 7).
m=1

@ Using coupling techniques (a’ la Eberle et al.) prove an initial data dependent version of the
martingale CLT.

@ Pass to the limit as € — 0.

ve-Mean Field limit Paris 08/03/22
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Sketch of proof for ¢ — 0 followed by N — oo

@ Need to pass to the limit in the diffusion matrix A¢f:N:

AN _ g1 (Td)N(I + VN (y) My (y) dy.

@ Keyidea My ~ Mpy_1(Mpy)1 as N — oo + natural uniform in IV estimate on o

[ 0 T @) (M= My a () dy

M.
— [ 9w (512 (001 ) M- ay
(Td)N MN*I
M
<|[r+ vy K i _(MN)I) :
L2(My—1) My_1 L2(Mpy_1)

@ The function My /(Mpy_1) is symmetric in all but one of its variables. Use techniques due to Lions
pass to N — oo on C(P(T9)). Similarly pass to N — oo to obtain
My_1 — 6Dmin S P(P(T)d)

@ Enough information to pass to the limit in the PDE.
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Abstract In this article, we study the mean field limit of weakly interacting diffusions for

confining and interaction potentials that are not necessarily convex. We explore the relation-

ship between the large IV limit of the constant in the logarithmic Sobolev inequality (LSI)

for the N-particle system and the presence or absence of phase transitions for the mean field

limit. The non-degeneracy of the LSI constant is shown to have far reaching consequences,
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We consider { X} }iz1,..n C R, the positions of N indistinguishable interacting particles at
time ¢t > 0, satisfying the following system of SDEs:

dX{=-VV(X{)d Zvlw X;, X])dt + /26-1dB; o

LaW(X37"'7X0 ) _pln EPQ Sym((Rd) )

where V : R? 5 R, W : R? x RY — R, 5’1 > 0 is the inverse temperature,
B{,i=1,...,N are independent d-dimensional Brownian motions, and the initial position of
the particles is i.i.d with law piy,.
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Assumption

The confining potential V' is lower semicontinuous, bounded below, Ky -convex for some
Kv € R and there exists Ro > 0 and § > 0, such that V (z) > |z|° for |x| > Ro.

Assumption

The interaction potential W' is lower semicontinuous, Kw -convex for some Kyw € R, bounded
below, symmetric W (x,y) = W (y, x), vanishes along the diagonal W (z, ) = 0, and there
exists C' such that

IViW(z,y)| < C(A + [W(z,y)| + V(z) + V(y)) ®
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Theorem

Under Al,A2, we have
lim sup Adg < Afqr ©)

N — oo

Moreover, if the mean field energy EMT : P(Q) — RU {400} given by

EMT[p] =" /plog ) dz + /W (z,y) dp(z) dp(y /V dp(z), (10)

admits a critical point that is not a minimiser, then A\fg; = 0, and there exists C > 0 such that

C

M < =
LSI S o

amn

v
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@ We often need to learn parameters in SDEs from data.

@ For multiscale diffusions standard inference methodologies are biased due to the
incompatibility between the homogenized model and the data at small scales (P.-Stuart
’07, P.-Papavasiliou-Stuart *09).

@ Maximum likelihood, together with appropriate filtering/subsampling of the data leads to
unbiased estimators (Abdulle et al 2021).

@ Alternative approach based on eigenfunction estimators.

@ Goal: learn parameters in (multiscale) mean field SDEs using data from single
trajectories.

@ Fluctuations around the mean field limit play in important role in the analysis of these
estimators.
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@ Drift estimation of multiscale diffusions based on filtered data A Abdulle, G Garegnani,
GA Pavliotis, AM Stuart, A Zanoni Foundations of Computational Mathematics, 1-52 4
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@ Parameter Estimation for the McKean Stochastic Differential Equation L Sharrock, N
Kantas, P Parpas, GA Pavliotis arXiv preprint arXiv:2106.13751 2021
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Eigenfunction martingale estimator

Problem: estimate parameters of interacting particle systems given discrete observations of one

single particle

Idea: employ martingale estimating functions based on eigenfunctions and eigenvalues of the

linearized generator of the mean field limit

Example: bistable confining potential and quadratic interaction

26 N =25 26 N =250
2.4 /‘ 2.4
S22 < 22
2 e 21 = o ea’l.‘\'
* ® O
1.2 14 1 1.2 14 1.6
ay [e31
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. 2.5 e L 25 ) P4
2 "w T2 o
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Top of fig:bistable: evolution of the estimator varying the number of observations M for
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