

Parareal algorithms for molecular dynamics simulations

Frédéric Legoll

Ecole des Ponts & Inria Paris

Joint with T. Lelièvre, D. Perez, U. Sharma and O. Gorynina

ANR QuAMProcs workshop, Inria Paris, 8-9 March 2022

Frédéric Legoll (ENPC & Inria)

ANR QuAMProcs workshop

Motivation

This work is motivated by molecular simulation, where we often have to simulate long trajectories of complex systems.

Typical dynamics: the Langevin equation

$$dq_t = p_t dt, \qquad dp_t = -\nabla V(q_t) dt - \gamma p_t dt + \sqrt{2\gamma\beta^{-1}} dW_t$$

Outline

• Since we have to simulate long-time trajectories, it seems attractive to use the parareal algorithm, which solves initial value problems by parallel-in-time computations (domain-decomposition fashion)

Outline

- Since we have to simulate long-time trajectories, it seems attractive to use the parareal algorithm, which solves initial value problems by parallel-in-time computations (domain-decomposition fashion)
- It turns out that this algorithm is not stable for MD problems when the time horizon is too large

Outline

- Since we have to simulate long-time trajectories, it seems attractive to use the parareal algorithm, which solves initial value problems by parallel-in-time computations (domain-decomposition fashion)
- It turns out that this algorithm is not stable for MD problems when the time horizon is too large
- We therefore introduce an adaptive parareal algorithm, which performs simulations on shorter time slabs and paste them together, thereby allowing for a significant CPU gain
- Application to the simulation in LAMMPS of self-interstitial atoms diffusing in a tungsten lattice

F.L., T. Lelièvre and U. Sharma, An adaptive parareal algorithm: application to the simulation of molecular dynamics trajectories, SIAM Journal on Scientific Computing 2022

O. Gorynina, F.L., T. Lelièvre and D. Perez, *Long-time simulation of diffusing self-interstitial atoms using the parareal algorithm*, in preparation

Frédéric Legoll (ENPC & Inria)

ANR QuAMProcs workshop

Parallel in time algorithm for ODEs

Parallel in time algorithm for ODEs

$$rac{dx}{dt} = f(x), \qquad x \in \mathbb{R}^d$$

The parareal algorithm (Lions, Maday and Turinici, 2001) is based upon two integrators to propagate the system over a time ΔT :

- a fine, accurate integrator $\mathcal{F}_{\Delta T}$
- a cheap coarse integrator $\mathcal{C}_{\Delta \mathcal{T}}$

For instance,

$$\mathcal{F}_{\Delta T} = (\Phi_{\delta t_F})^{\Delta T / \delta t_F}$$
 and $\mathcal{C}_{\Delta T} = (\Phi_{\delta t_C})^{\Delta T / \delta t_C}$ with $\delta t_F \ll \delta t_C$

where $\Phi_{\delta t}$ is a one time step propagator

• Initialization: coarse propagation that yields $\{x_n^{k=0}\}_n$:

$$\forall n, \quad x_{n+1}^{k=0} = \mathcal{C}_{\Delta T}(x_n^{k=0})$$

- Initialization: coarse propagation that yields $\{x_n^{k=0}\}_n$: $\forall n, \quad x_{n+1}^{k=0} = C_{\Delta T}(x_n^{k=0})$
- Iterate over k ≥ 0:

• Initialization: coarse propagation that yields $\{x_n^{k=0}\}_n$:

$$\forall n, \quad x_{n+1}^{k=0} = \mathcal{C}_{\Delta T}(x_n^{k=0})$$

- Iterate over $k \ge 0$:
 - compute jumps (in parallel):

$$J_n^k = \mathcal{F}_{\Delta T}(x_n^k) - \mathcal{C}_{\Delta T}(x_n^k)$$

- Initialization: coarse propagation that yields $\{x_n^{k=0}\}_n$: $\forall n, \quad x_{n+1}^{k=0} = C_{\Delta T}(x_n^{k=0})$
- Iterate over $k \ge 0$:
 - compute jumps (in parallel):

$$J_n^k = \mathcal{F}_{\Delta T}(x_n^k) - \mathcal{C}_{\Delta T}(x_n^k)$$

• sequential update to obtain $\{x_n^{k+1}\}_n$:

$$\forall n, \quad x_{n+1}^{k+1} = \mathcal{C}_{\Delta T}(x_n^{k+1}) + J_n^k$$

- Initialization: coarse propagation that yields $\{x_n^{k=0}\}_n$: $\forall n, \quad x_{n+1}^{k=0} = C_{\Delta T}(x_n^{k=0})$
- Iterate over $k \ge 0$:
 - compute jumps (in parallel):

$$J_n^k = \mathcal{F}_{\Delta T}(x_n^k) - \mathcal{C}_{\Delta T}(x_n^k)$$

• sequential update to obtain $\{x_n^{k+1}\}_n$:

$$\forall n, \quad x_{n+1}^{k+1} = \mathcal{C}_{\Delta T}(x_n^{k+1}) + J_n^k$$

The fine solver is called only in the parallel part of the algorithm.

Parareal algorithm for MD simulations – 1

• The parareal iterations converge (when $k o \infty$) to the solution of the reference dynamics

$$x_{n+1}=\mathcal{F}_{\Delta T}(x_n)$$

This comes from the fact that $x_n^k = \mathcal{F}_{\Delta T}^n(x_0)$ whenever $k \ge n$.

- In practice, for many applications, convergence is observed in much fewer iterations
- In MD, we often run simulations with time steps chosen just below the stability limit (this often provides sufficient accuracy on the quantities of interest).
- There is hence no room for choosing $\delta t_C \gg \delta t_F$

Parareal algorithm for MD simulations – 2

- We thus turn to a different paradigm where $C_{\Delta T}$ integrates a simpler dynamics than $\mathcal{F}_{\Delta T}$ (say with the same time step)
- In our setting, $\mathcal{F}_{\Delta T}$ integrates the original Langevin dynamics (with the reference potential $V_f \equiv V$) whereas $\mathcal{C}_{\Delta T}$ integrates a Langevin dynamics run on a simplified (cheaper to compute) potential V_c .
- The Gaussian increments (in the numerical scheme used to integrate the Langevin equation) are the same for $\mathcal{F}_{\Delta T}$ and $\mathcal{C}_{\Delta T}$ and over all parareal iterations (to ensure as best as possible trajectorial convergence)

Similar paradigm (in terms of V_f vs V_c) in [Baffico et al, PRE 2002]

Simulations on toy model problems

Two model problems

• A quadratic model in 1D:

$$V_f(q)=rac{q^2}{2}, \qquad V_c(q)=\omega\,rac{q^2}{2} \;\; ext{for some } \omega>0$$

Simple enough to be amenable to theoretical analysis, and exhibits the same issues as those appearing with more complex models.

Two model problems

• A quadratic model in 1D:

$$V_f(q)=rac{q^2}{2}, \qquad V_c(q)=\omega\,rac{q^2}{2} \;\; ext{for some } \omega>0$$

Simple enough to be amenable to theoretical analysis, and exhibits the same issues as those appearing with more complex models.

• A slightly less simple model: a 7-atom Lennard-Jones cluster in 2D:

$$V_f(q) = \frac{1}{2} \sum_{i,j \in \{1,...,7\}, i \neq j} \phi_f(|q^i - q^j|), \qquad \phi_f(r) = r^{-12} - 2r^{-6}$$

 $V_c \equiv$ harm. approx. of V_f at the global minimum (the initial condition is chosen in the corresponding well).

Convergence criteria

• Relative error between consecutive parareal trajectories:

$$E(k,N) = \frac{\sum_{n=1}^{N} |q_n^k - q_n^{k-1}|}{\sum_{n=1}^{N} |q_n^{k-1}|}$$

- By construction, we have $q_n^k = q(n\Delta T)$ for any $k \ge n$, and thus E(k, N) = 0 for $k \ge N + 1$
- We stop the algorithm at the first parareal iteration \overline{k} for which

 $E(\overline{k},N) < \delta_{
m conv} = 10^{-5}$

Convergence criteria

• Relative error between consecutive parareal trajectories:

$$E(k, N) = \frac{\sum_{n=1}^{N} |q_n^k - q_n^{k-1}|}{\sum_{n=1}^{N} |q_n^{k-1}|}$$

- By construction, we have $q_n^k = q(n\Delta T)$ for any $k \ge n$, and thus E(k, N) = 0 for $k \ge N + 1$
- We stop the algorithm at the first parareal iteration \overline{k} for which

 $E(\overline{k}, N) < \delta_{\mathrm{conv}} = 10^{-5}$

The gain is then

 $gain = \frac{N}{\overline{k}} = \frac{\# \text{ fine propagations for a sequential algorithm}}{\# \text{ fine propagations for the parareal algorithm}}$

$E_f(k, N)$ = relative error with respect to the reference trajectory

Instability at large times

Plot of $E_f(k, N)$ as a function of k:

For small N, fast convergence of the parareal iterations (gain ≈ 10)
For large N, the error increases to large values when k increases (because the trajectory goes far away), before eventually converging

Harmonic model, $\omega = 0.1$, $\Delta T = 0.05$, $\beta = 3$

Gain as a function of N and ω

- Fixed coarse model: the gain decreases to 1 when N increases
- Fixed N: the gain decreases when the coarse model differs too much from the fine one

Harmonic model, $\Delta T = 0.05$, $\beta = 3$

Theoretical analysis on a toy problem -1

• Reference problem:
$$V_f(x) = x^2/2$$
 and

$$\frac{dx}{dt} = -V_f'(x) = -x$$

Fine integrator (exact integrator over ΔT):

$$\mathcal{F}_{\Delta T}(x) = \exp(-\Delta T) x$$

• Coarse model:
$$V_c(x) = \omega x^2/2$$
 and

$$\frac{dx}{dt} = -V_c'(x) = -\omega x$$

Coarse integrator (exact integrator over ΔT):

$$\mathcal{C}_{\Delta T}(x) = \exp(-\omega \Delta T) x$$

Overdamped dynamics without noise

Theoretical analysis on a toy problem – 2

We study the relative error at the terminal point

$$R_{n,k} = \frac{x(n\Delta T) - x_n^k}{x(n\Delta T)} = \frac{x_n^n - x_n^k}{x_n^n}$$

as a function of k, for various choices

- of the trajectory length n
- and of

$$y = \frac{\mathcal{F}_{\Delta T}}{\mathcal{C}_{\Delta T}} - 1 \in (-1, \infty)$$

which quantifies how much the coarse and the fine model differ $(\omega = 1 \text{ iff } y = 0).$

Formal result (y > 0)

In the case y > 0, then

 $0 < R_{n,k} \le 1$ and $k \mapsto R_{n,k}$ is decreasing

• If y is such that $y \le c/n$ (the coarse model is very close to the fine; the longer the trajectory, the closer the models should be), then

 $k \mapsto R_{n,k}$ is convex

Formal result (y > 0)

In the case y > 0, then

 $0 < R_{n,k} \le 1$ and $k \mapsto R_{n,k}$ is decreasing

 If y is such that y ≤ c/n (the coarse model is very close to the fine; the longer the trajectory, the closer the models should be), then

 $k \mapsto R_{n,k}$ is convex

• If y is such that $y \ge c n$ (the coarse model is very different from the fine), then

 $k \mapsto R_{n,k}$ is concave

• If y is in-between, then there exists $\overline{p} \approx \frac{n|y|}{1+|y|} \in [1, n]$ such that

 $k \mapsto R_{n,k}$ is concave for $1 \le k \le \overline{p}$ and convex for $\overline{p} \le k \le n$

Numerical illustration (y > 0)

The error (as a function of k) is

- convex for $\omega = 1.02$ (excellent convergence)
- concave for $\omega = 160$ (error close to 100% for almost all $k \dots$)
- concave then convex for in-between ω (infl. point depends on y & n)

Formal result $(y \in (-1, 0))$

• If y is such that $|y| \le c/n$, then the situation is fine: the sequence $k \mapsto |R_{n,k}|$ is decreasing

• Otherwise, the situation is bad. Along the parareal iterations, the error gets very large:

$$\max_{k \in \{0,\dots,n\}} |R_{n,k}| \geq \frac{C_y}{\sqrt{n}} (D_y)^n$$

for some $D_y > 1$ only depending on y (which, we recall, quantifies how much the two models differ):

- at fixed y, the error gets exponentially large as a function of n
- the rate D_y increases when $|y| \in (0,1)$ increases

Numerical illustration $(y \in (-1, 0))$

Plot of $k \mapsto R_{n,k}$ for n = 1000

For $\omega = 0.1$ and n = 1000, we get y < 0 and $\overline{p} \approx 42$. We indeed observe that $|R_{n,k}|$ is maximal (and very large!) for $k = \overline{p} \approx \frac{n|y|}{1+|y|}$.

These results provide a complete understanding of the error for this oversimplified model, which is illustrative of the general situation

Frédéric Legoll (ENPC & Inria)

ANR QuAMProcs workshop

Relative error $E \equiv$ relative error between consecutive trajectories

- On the time-slab $[0, N\Delta T]$, we run the parareal algorithm until E is
 - ullet either smaller than the convergence threshold $\delta_{\rm conv}$
 - or larger than an explosion threshold δ_{expl} (attained at parareal iteration $\# k_{cur}$)

Relative error $E \equiv$ relative error between consecutive trajectories

- On the time-slab $[0, N\Delta T]$, we run the parareal algorithm until E is
 - ullet either smaller than the convergence threshold $\delta_{\rm conv}$
 - or larger than an explosion threshold δ_{expl} (attained at parareal iteration $\# k_{cur}$)
- In the blow-up case, for the parareal iteration $k_{\rm cur}$, we find the first time iteration $1 + \tilde{m}_1 \leq N$ for which E exceeds $\delta_{\rm expl}$, and we shorten the slab to $[0, \tilde{m}_1 \Delta T]$.
- We then proceed with the parareal iterations on the slab $[0, \tilde{m}_1 \Delta T]$, that we possibly further shorten, until the relative error (on $[0, \tilde{m}_1 \Delta T]$) is smaller than δ_{conv} .

Relative error $E \equiv$ relative error between consecutive trajectories

- On the time-slab $[0, N \Delta T]$, we run the parareal algorithm until E is
 - $\bullet\,$ either smaller than the convergence threshold $\delta_{\rm conv}$
 - or larger than an explosion threshold $\delta_{\rm expl}$ (attained at parareal iteration $\#~k_{\rm cur})$
- In the blow-up case, for the parareal iteration $k_{\rm cur}$, we find the first time iteration $1 + \tilde{m}_1 \leq N$ for which E exceeds $\delta_{\rm expl}$, and we shorten the slab to $[0, \tilde{m}_1 \Delta T]$.
- We then proceed with the parareal iterations on the slab $[0, \tilde{m}_1 \Delta T]$, that we possibly further shorten, until the relative error (on $[0, \tilde{m}_1 \Delta T]$) is smaller than δ_{conv} .
- Once we have converged on $[0, \tilde{m}_1 \Delta T]$, we proceed with the next part of the time range and define the new (tentative) time-slab as $[\tilde{m}_1 \Delta T, N \Delta T]$.

Explosion threshold

The slab sizes are such that $E \leq \delta_{expl}$:

- \bullet if δ_{expl} is chosen large, the adaptive criterion is never triggered: vanilla parareal
- $\bullet\,$ if δ_{expl} is chosen small, the slabs are short: no parallelism anymore
- ullet the optimal choice of δ_{expl} is somewhere in-between

List of the sizes of the time-slabs found by the algorithm:

Harmonic model, $\omega = 0.1$, $\Delta T = 0.05$, $\beta = \gamma = 3$, N = 5000

- ullet For moderate values of δ_{expl} , the gain seems independent of N
- For large *N*, the adaptive algorithm always outperforms the classical version (gain \approx 30 for Har-1d, gain \approx 7 for LJ7-2d)

- The trajectories provided by the classical parareal algorithm are far away from the reference trajectories: not only trajectorial accuracy is poor, but statistical accuracy is poor as well
- The adaptive algorithm always outperforms the classical version

- F.L., T. Lelièvre and U. Sharma, SIAM J. Scientific Computing 2022
- Support of ANR (through project CINE-PARA) and of EuroHPC (through project TIME-X) are gratefully acknowledged

Applications to the simulation of self-interstitial atoms in tungsten

Joint work with O. Gorynina, T. Lelièvre and D. Perez

Frédéric Legoll (ENPC & Inria)

ANR QuAMProcs workshop

8-9 March 2022 26 / 40

Our aim

- We consider a BCC lattice of 128 tungsten atoms (with periodic boundary conditions)
- We add a self-interstitial atom (SIA)
- At the temperature of 2000 K and for $\gamma^{-1} = 1$ ps:
 - the system is metastable
 - the activation energy is sufficiently small to observe several jumps of the SIA within affordable trajectories
- Quantities of interest:
 - list of the residence times ≡ time spent by the SIA in a given well before jumping into another well (monitor "pathwise accuracy")
 - distribution of the residence times (monitor "statistical accuracy")

Time step: $\delta t = 2$ fs

Fine and coarse potentials

- fine (reference) potential V_f: SNAP potential [Thompson et al, J. Comput. Phys. 2015]:
 - an empirical potential with several hundreds of parameters
 - adjusted using Machine Learning techniques on DFT results (lattice constants, elastic constants, ...)
 - very accurate and very expensive!

• coarse potential V_c: EAM potential [Daw and Baskes, PRB 1984]

Computational time required to perform 5000 steps of Langevin scheme:

Potential	time (in sec. on a standard laptop)			
V_c (EAM)	0.6923			
V_f (SNAP)	1788			

Although V_c is much cheaper than V_f , we will compute the actual gain, without assuming that Cost V_c is negligible vs Cost V_f .

Frédéric Legoll (ENPC & Inria)

ANR QuAMProcs workshop

Implementation in LAMMPS

$$x_{n+1}^{k+1} = \mathcal{C}_{\Delta T}(x_n^{k+1}) + \mathcal{F}_{\Delta T}(x_n^k) - \mathcal{C}_{\Delta T}(x_n^k)$$

We implemented the parareal algorithm in a non-intrusive manner in LAMMPS:

- master code: in Python
- for given $x_n^k = (q_n^k, p_n^k)$,
 - Python requests LAMMPS to advance the system (using either V_f or V_c) over a time ΔT (by possibly using several time steps δt), thereby computing $\mathcal{F}_{\Delta T}(x_n^k)$ and $\mathcal{C}_{\Delta T}(x_n^k)$
 - the jumps $\mathcal{F}_{\Delta T}(x_n^k) \mathcal{C}_{\Delta T}(x_n^k)$ are computed by Python
- in the sequential part, Python first requests LAMMPS to compute $C_{\Delta T}(x_n^{k+1})$ and second adds the jump to obtain x_{n+1}^{k+1}
- the parareal procedure is implemented in Python and LAMMPS is used as a legacy code

BBK scheme [Brunger, Brooks and Karplus, Chem. Phys. Lett. 1984]:

• General expression (for $\ell \geq 1$):

$$p_{\ell+1/2} = p_{\ell} - \frac{\delta t}{2} \nabla V(q_{\ell}) - \frac{\delta t}{2} \gamma p_{\ell-1/2} + \frac{1}{2} \sqrt{2\gamma \beta^{-1} \delta t} \, \boldsymbol{G}_{\ell}$$

$$q_{\ell+1} = q_{\ell} + p_{\ell+1/2} \, \delta t$$

$$p_{\ell+1} = p_{\ell+1/2} - \frac{\delta t}{2} \, \nabla V(q_{\ell+1}) - \frac{\delta t}{2} \gamma \, p_{\ell+1/2} + \frac{1}{2} \sqrt{2\gamma \beta^{-1} \delta t} \, \boldsymbol{G}_{\ell+1}$$

 The same Gaussian increment is used at the third line to compute p_{ℓ+1} and at the first line of the next iteration to compute p_{(ℓ+1)+1/2}

BBK scheme [Brunger, Brooks and Karplus, Chem. Phys. Lett. 1984]:

• General expression (for $\ell \geq 1$):

$$egin{aligned} p_{\ell+1/2} &= p_\ell - rac{\delta t}{2} \,
abla V(q_\ell) - rac{\delta t}{2} \, \gamma \, p_{\ell-1/2} + rac{1}{2} \sqrt{2 \gamma eta^{-1} \delta t} \, egin{aligned} egin{aligned} q_\ell \ q_{\ell+1} &= q_\ell + p_{\ell+1/2} \, \delta t \ p_{\ell+1} &= p_{\ell+1/2} - rac{\delta t}{2} \,
abla V(q_{\ell+1}) - rac{\delta t}{2} \, \gamma \, p_{\ell+1/2} + rac{1}{2} \sqrt{2 \gamma eta^{-1} \delta t} \, egin{aligned} egin{aligned} eta_\ell \ g_{\ell+1} &= p_{\ell+1/2} & - rac{\delta t}{2} \
abla V(q_{\ell+1}) - rac{\delta t}{2} \, \gamma \, p_{\ell+1/2} + rac{1}{2} \sqrt{2 \gamma eta^{-1} \delta t} \, eta_\ell \end{aligned}$$

- The same Gaussian increment is used at the third line to compute p_{l+1} and at the first line of the next iteration to compute p_{l+1+1/2}
- Very easy to implement on the basis of a Verlet scheme:

$$p_{\ell+1/2} = p_{\ell} + \frac{\delta t}{2} F(q_{\ell})$$

$$q_{\ell+1} = q_{\ell} + p_{\ell+1/2} \, \delta t$$
Compute the new force $F(q_{\ell+1})$

$$p_{\ell+1} = p_{\ell+1/2} + \frac{\delta t}{2} F(q_{\ell+1})$$

Here, the force F depends on q and p and is the sum of a potential force, a friction force and a random force

Frédéric Legoll (ENPC & Inria)

ANR QuAMProcs workshop

BBK scheme [Brunger, Brooks and Karplus, Chem. Phys. Lett. 1984]:

• General expression (for $\ell \geq 1$):

$$p_{\ell+1/2} = p_{\ell} - \frac{\delta t}{2} \nabla V(q_{\ell}) - \frac{\delta t}{2} \gamma p_{\ell-1/2} + \frac{1}{2} \sqrt{2\gamma \beta^{-1} \delta t} \frac{G_{\ell}}{G_{\ell}}$$

$$q_{\ell+1} = q_{\ell} + p_{\ell+1/2} \delta t$$

$$p_{\ell+1} = p_{\ell+1/2} - \frac{\delta t}{2} \nabla V(q_{\ell+1}) - \frac{\delta t}{2} \gamma p_{\ell+1/2} + \frac{1}{2} \sqrt{2\gamma \beta^{-1} \delta t} \frac{G_{\ell+1}}{G_{\ell+1}}$$

For $\ell = 0$, the scheme needs to be adjusted since $p_{\ell-1/2}$ is not defined.

BBK scheme [Brunger, Brooks and Karplus, Chem. Phys. Lett. 1984]:

• General expression (for $\ell \geq 1$):

$$p_{\ell+1/2} = p_{\ell} - \frac{\delta t}{2} \nabla V(q_{\ell}) - \frac{\delta t}{2} \gamma p_{\ell-1/2} + \frac{1}{2} \sqrt{2\gamma\beta^{-1}\delta t} G_{\ell}$$

$$q_{\ell+1} = q_{\ell} + p_{\ell+1/2} \delta t$$

$$p_{\ell+1} = p_{\ell+1/2} - \frac{\delta t}{2} \nabla V(q_{\ell+1}) - \frac{\delta t}{2} \gamma p_{\ell+1/2} + \frac{1}{2} \sqrt{2\gamma\beta^{-1}\delta t} G_{\ell+1}$$

For $\ell = 0$, the scheme needs to be adjusted since $p_{\ell-1/2}$ is not defined.

• Scheme for $\ell = 0$:

$$p_{\ell+1/2} = p_{\ell} - \frac{\delta t}{2} \nabla V(q_{\ell}) - \frac{\delta t}{2} \gamma p_{\ell} + \frac{1}{2} \sqrt{2\gamma \beta^{-1} \delta t} G_{\ell}$$

$$q_{\ell+1} = q_{\ell} + p_{\ell+1/2} \delta t$$

$$p_{\ell+1} = p_{\ell+1/2} - \frac{\delta t}{2} \nabla V(q_{\ell+1}) - \frac{\delta t}{2} \gamma p_{\ell+1/2} + \frac{1}{2} \sqrt{2\gamma \beta^{-1} \delta t} G_{\ell+1}$$

In addition, to go from (q₀, p₀) to (q₁, p₁), two Gaussian increments G₀ and G₁ are used (in contrast to the next steps).

These specific features have no consequence only if many steps of the BBK algorithm are performed ...

Frédéric Legoll (ENPC & Inria)

ANR QuAMProcs workshop

Consider our parareal implementation, and assume $V \equiv 0$. To reach the final time $T = N \Delta T$ using a scheme with the time step $\delta t = \Delta T/L$, we do:

- For n = 1 to N do
 - enter LAMMPS
 - perform L time steps of the BBK scheme of length δt
 - exit LAMMPS

The equilibrium distribution of the $\{p_{nL}\}_{n\geq 0}$ (momenta when exiting LAMMPS) can be computed: it is a Gaussian distribution with variance

$$\sigma_{L}=eta^{-1}\,\left(1-rac{1}{2L}
ight)$$
 rather than eta^{-1}

Consider our parareal implementation, and assume $V \equiv 0$. To reach the final time $T = N \Delta T$ using a scheme with the time step $\delta t = \Delta T/L$, we do:

- For n = 1 to N do
 - enter LAMMPS
 - perform L time steps of the BBK scheme of length δt
 - exit LAMMPS

The equilibrium distribution of the $\{p_{nL}\}_{n\geq 0}$ (momenta when exiting LAMMPS) can be computed: it is a Gaussian distribution with variance

$$\sigma_L = \beta^{-1} \left(1 - \frac{1}{2L} \right)$$
 rather than β^{-1}

L	β^{-1}	Empirical variance of $\{p_{nL}\}_{0 \le n \le N}$	Ν	σ_L
1	300	157	20000	150
1	600	303	20000	300
10	300	280	20000	285
100	300	303.46	20000	298

OK if $L \gg 1$, but nok if L is small!

Suggestion: use a time-dependent temperature:

• General expression (for $\ell \geq 1$):

$$p_{\ell+1/2} = p_{\ell} - \frac{\delta t}{2} \nabla V(q_{\ell}) - \frac{\delta t}{2} \gamma p_{\ell-1/2} + \frac{1}{2} \sqrt{2\gamma \beta_{\ell}^{-1} \delta t} G_{\ell}$$

$$q_{\ell+1} = q_{\ell} + p_{\ell+1/2} \delta t$$

$$p_{\ell+1} = p_{\ell+1/2} - \frac{\delta t}{2} \nabla V(q_{\ell+1}) - \frac{\delta t}{2} \gamma p_{\ell+1/2} + \frac{1}{2} \sqrt{2\gamma \beta_{\ell}^{-1} \delta t} G_{\ell+1}$$

For $\ell = 0$, we again replace $p_{\ell-1/2}$ by p_{ℓ}

Suggestion: use a time-dependent temperature:

• General expression (for $\ell \geq 1$):

$$p_{\ell+1/2} = p_{\ell} - \frac{\delta t}{2} \nabla V(q_{\ell}) - \frac{\delta t}{2} \gamma p_{\ell-1/2} + \frac{1}{2} \sqrt{2\gamma \beta_{\ell}^{-1} \delta t} G_{\ell}$$

$$q_{\ell+1} = q_{\ell} + p_{\ell+1/2} \delta t$$

$$p_{\ell+1} = p_{\ell+1/2} - \frac{\delta t}{2} \nabla V(q_{\ell+1}) - \frac{\delta t}{2} \gamma p_{\ell+1/2} + \frac{1}{2} \sqrt{2\gamma \beta_{\ell}^{-1} \delta t} G_{\ell+1}$$

For $\ell=0$, we again replace $p_{\ell-1/2}$ by p_{ℓ}

• We write $\beta_{\ell}^{-1} = C_{\ell} \beta^{-1}$ and identify C_{ℓ} such that

Var
$$p_0 = \beta^{-1} \Longrightarrow$$
 Var $p_\ell = \beta^{-1}$ for any $\ell \ge 1$

We find $\mathit{C}_{0}=2$ and $\sqrt{\mathit{C}_{\ell}}=\left(\sqrt{\mathit{C}_{\ell-1}+8}-\sqrt{\mathit{C}_{\ell-1}}\right)/2$

L	β^{-1}	Empirical variance of $\{p_{nL}\}_{0 \le n \le N}$	Ν
1	300	303	20000
10	300	294	20000
10	300	297	200000

Reference results

History of residence times on a single trajectory:

 $[122, 23, 27, 476, 14, 32, 560, 245] \times \delta t$

Distribution of residence times (25 trajectories of 2000 time steps):

Mean residence time: $T_{\text{mean}} = 373 \times \delta t$, confidence interval [278; 469] $\times \delta t$

Reference results

History of residence times on a single trajectory:

 $[122, 23, 27, 476, 14, 32, 560, 245] \times \delta t$

Distribution of residence times (25 trajectories of 2000 time steps):

Mean residence time: $T_{\text{mean}} = 373 \times \delta t$, confidence interval [278; 469] $\times \delta t$

EAM trajectory is wrong: $T_{mean} = 91 \times \delta t$, confid. interval [81; 100] $\times \delta t$ Frédéric Legoll (ENPC & Inria)ANR QuAMProcs workshop8-9 March 202234 / 40

Parareal results, pathwise accuracy

		reference residence times			
		[122, 23, 27, 476, 14, 32, 560, 245]			
	-				
δ_{expl}	$\delta_{ m conv}$	parareal residence times			
0.35	10 ⁻⁵	[63, 27, 16, 36, 19, 34, 332, 972]			
0.35	10^{-10}	[122, 23, 27, 476, 14, 32, 575, 15, 28, 31, 156]			

- For the convergence threshold $\delta_{\rm conv} = 10^{-10}$, pathwise accuracy is reached.
- This is not the case for $\delta_{\rm conv}=10^{-5}$
- What about statistical accuracy?

Parareal results, statistical accuracy ($\delta_{ m conv} = 10^{-10}$)

Reference results: $T_{\text{mean}} = 373 \times \delta t$, confidence interval [278; 469] $\times \delta t$

Parareal results: $T_{\rm mean} = 372 \times \delta t$, confidence interval [278; 466] $\times \delta t$

Excellent accuracy (even though noise and IC are different on reference and parareal results)

Frédéric Legoll (ENPC & Inria)

ANR QuAMProcs workshop

Parareal results, statistical accuracy ($\delta_{ m conv} = 10^{-3}$)

Reference results: $T_{\text{mean}} = 373 \times \delta t$, confidence interval [278; 469] $\times \delta t$

Parareal results: $T_{\rm mean} = 320 \times \delta t$, confidence interval [246; 394] $\times \delta t$

Very good statistical accuracy (overlapping confidence intervals!), while no pathwise accuracy for this value of $\delta_{\rm conv}$

Frédéric Legoll (ENPC & Inria)

ANR QuAMProcs workshop

Parareal results, statistical accuracy ($\delta_{ m conv} = 10^{-1}$)

Reference results: $T_{\text{mean}} = 373 \times \delta t$, confidence interval [278; 469] $\times \delta t$

Parareal results: $T_{\text{mean}} = 1.21 \times \delta t$, confidence interval [1.19; 1.24] $\times \delta t$

No accuracy at all (δ_{conv} is too large)

Gain

Gain	$(\delta t =$	2 fs	and	$\delta_{\rm conv}$	$= 10^{-1}$	⁻³):
------	---------------	------	-----	---------------------	-------------	------------------

δ_{expl}	N_{final}	Theo. gain	Actual gain	$\#$ time-slabs to reach $N_{ m final}$
0.15	2000	4.73	4.68	90
0.20	2000	4.84	4.77	61
0.25	2000	5.06	4.95	38
0.30	2000	5.28	5.09	23
0.35	2000	5.45	5.12	13
0.40	2000	3.67	3.02	4

- $\bullet\,$ The gain slightly decreases if δ_{conv} decreases.
- The gain increases if δt decreases: gain \approx 16 for $\delta t = 0.5$ fs

Conclusions

- Non-intrusive implementation within LAMMPS is possible
 - this allows to consider realistic systems
 - needs appropriate adjustement of time-scheme
- $\bullet\,$ If $\delta_{\rm conv}$ is sufficiently small, then pathwise accuracy on the history of residence times
- Regime of intermediate $\delta_{\rm conv}$ where no pathwise accuracy but very good statistical accuracy
- Significant computational gains are achieved on systems of physical interest

Support of ANR (through project CINE-PARA) and of EuroHPC (through project TIME-X) are gratefully acknowledged