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Motivation

This work is motivated by molecular simulation, where we often have to
simulate long trajectories of complex systems.

Typical dynamics: the Langevin equation

dqt = pt dt, dpt = −∇V (qt) dt − γ pt dt +
√

2γβ−1 dWt
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Outline

Since we have to simulate long-time trajectories, it seems attractive
to use the parareal algorithm, which solves initial value problems by
parallel-in-time computations (domain-decomposition fashion)

It turns out that this algorithm is not stable for MD problems when
the time horizon is too large

We therefore introduce an adaptive parareal algorithm, which
performs simulations on shorter time slabs and paste them together,
thereby allowing for a significant CPU gain

Application to the simulation in LAMMPS of self-interstitial atoms
diffusing in a tungsten lattice

F.L., T. Lelièvre and U. Sharma, An adaptive parareal algorithm: application to the simulation

of molecular dynamics trajectories, SIAM Journal on Scientific Computing 2022

O. Gorynina, F.L., T. Lelièvre and D. Perez, Long-time simulation of diffusing self-interstitial

atoms using the parareal algorithm, in preparation
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Parallel in time algorithm for ODEs

dx

dt
= f (x), x ∈ Rd

The parareal algorithm (Lions, Maday and Turinici, 2001) is based upon
two integrators to propagate the system over a time ∆T :

a fine, accurate integrator F∆T

a cheap coarse integrator C∆T

For instance,

F∆T = (ΦδtF )∆T/δtF and C∆T = (ΦδtC )∆T/δtC with δtF � δtC

where Φδt is a one time step propagator

Frédéric Legoll (ENPC & Inria) ANR QuAMProcs workshop 8-9 March 2022 4 / 40



Parallel in time algorithm for ODEs

dx

dt
= f (x), x ∈ Rd

The parareal algorithm (Lions, Maday and Turinici, 2001) is based upon
two integrators to propagate the system over a time ∆T :

a fine, accurate integrator F∆T

a cheap coarse integrator C∆T

For instance,

F∆T = (ΦδtF )∆T/δtF and C∆T = (ΦδtC )∆T/δtC with δtF � δtC

where Φδt is a one time step propagator

Frédéric Legoll (ENPC & Inria) ANR QuAMProcs workshop 8-9 March 2022 4 / 40



The parareal iterative procedure

Initialization: coarse propagation that yields
{
xk=0
n

}
n
:

∀n, xk=0
n+1 = C∆T (xk=0

n )
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Frédéric Legoll (ENPC & Inria) ANR QuAMProcs workshop 8-9 March 2022 6 / 40



The parareal iterative procedure

Initialization: coarse propagation that yields
{
xk=0
n

}
n
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Iterate over k ≥ 0:

compute jumps (in parallel):

Jkn = F∆T (xkn )− C∆T (xkn )

sequential update to obtain
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}
n
:

∀n, xk+1
n+1 = C∆T (xk+1

n ) + Jkn

The fine solver is called only in the parallel part of the algorithm.
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Parareal algorithm for MD simulations – 1

The parareal iterations converge (when k →∞) to the solution of the
reference dynamics

xn+1 = F∆T (xn)

This comes from the fact that xkn = Fn
∆T (x0) whenever k ≥ n.

In practice, for many applications, convergence is observed in much
fewer iterations

In MD, we often run simulations with time steps chosen just below
the stability limit (this often provides sufficient accuracy on the
quantities of interest).

There is hence no room for choosing δtC � δtF
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Parareal algorithm for MD simulations – 2

We thus turn to a different paradigm where C∆T integrates a simpler
dynamics than F∆T (say with the same time step)

In our setting, F∆T integrates the original Langevin dynamics (with
the reference potential Vf ≡ V ) whereas C∆T integrates a Langevin
dynamics run on a simplified (cheaper to compute) potential Vc .

The Gaussian increments (in the numerical scheme used to integrate
the Langevin equation) are the same for F∆T and C∆T and over all
parareal iterations (to ensure as best as possible trajectorial
convergence)

Similar paradigm (in terms of Vf vs Vc ) in [Baffico et al, PRE 2002]
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Simulations on
toy model problems
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Two model problems

A quadratic model in 1D:

Vf (q) =
q2

2
, Vc(q) = ω

q2

2
for some ω > 0

Simple enough to be amenable to theoretical analysis, and exhibits
the same issues as those appearing with more complex models.

A slightly less simple model: a 7-atom Lennard-Jones cluster in 2D:

Vf (q) =
1

2

∑
i ,j∈{1,...,7}, i 6=j

φf (|qi − qj |), φf (r) = r−12 − 2 r−6

Vc ≡ harm. approx. of Vf at the global minimum (the initial
condition is chosen in the corresponding well).

6 7 3

1 2

5 4
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Convergence criteria

Relative error between consecutive parareal trajectories:

E (k ,N) =

∑N
n=1 |qkn − qk−1

n |∑N
n=1 |q

k−1
n |

.

By construction, we have qkn = q(n∆T ) for any k ≥ n, and thus
E (k ,N) = 0 for k ≥ N + 1

We stop the algorithm at the first parareal iteration k for which

E (k ,N) < δconv = 10−5

The gain is then

gain =
N

k
=

# fine propagations for a sequential algorithm

# fine propagations for the parareal algorithm

Ef (k ,N) = relative error with respect to the reference trajectory

Frédéric Legoll (ENPC & Inria) ANR QuAMProcs workshop 8-9 March 2022 13 / 40



Convergence criteria

Relative error between consecutive parareal trajectories:

E (k ,N) =

∑N
n=1 |qkn − qk−1

n |∑N
n=1 |q

k−1
n |

.

By construction, we have qkn = q(n∆T ) for any k ≥ n, and thus
E (k ,N) = 0 for k ≥ N + 1

We stop the algorithm at the first parareal iteration k for which

E (k ,N) < δconv = 10−5

The gain is then

gain =
N

k
=

# fine propagations for a sequential algorithm

# fine propagations for the parareal algorithm

Ef (k ,N) = relative error with respect to the reference trajectory
Frédéric Legoll (ENPC & Inria) ANR QuAMProcs workshop 8-9 March 2022 13 / 40



Instability at large times

Plot of Ef (k ,N) as a function of k :
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Gain as a function of N and ω
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Theoretical analysis on a toy problem – 1

Reference problem: Vf (x) = x2/2 and

dx

dt
= −V ′f (x) = −x

Fine integrator (exact integrator over ∆T ):

F∆T (x) = exp(−∆T ) x

Coarse model: Vc(x) = ω x2/2 and

dx

dt
= −V ′c(x) = −ω x

Coarse integrator (exact integrator over ∆T ):

C∆T (x) = exp(−ω∆T ) x

Overdamped dynamics without noise
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Theoretical analysis on a toy problem – 2

We study the relative error at the terminal point

Rn,k =
x(n∆T )− xkn

x(n∆T )
=

xnn − xkn
xnn

as a function of k , for various choices

of the trajectory length n

and of

y =
F∆T

C∆T
− 1 ∈ (−1,∞)

which quantifies how much the coarse and the fine model differ
(ω = 1 iff y = 0).
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Formal result (y > 0)

In the case y > 0, then

0 < Rn,k ≤ 1 and k 7→ Rn,k is decreasing

If y is such that y ≤ c/n (the coarse model is very close to the fine;
the longer the trajectory, the closer the models should be), then

k 7→ Rn,k is convex

If y is such that y ≥ c n (the coarse model is very different from the
fine), then

k 7→ Rn,k is concave

If y is in-between, then there exists p ≈ n|y |
1 + |y |

∈ [1, n] such that

k 7→ Rn,k is concave for 1 ≤ k ≤ p and convex for p ≤ k ≤ n
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Numerical illustration (y > 0)

Plot of k 7→ Rn,k for n = 1000

The error (as a function of k) is

convex for ω = 1.02 (excellent convergence)

concave for ω = 160 (error close to 100% for almost all k . . . )

concave then convex for in-between ω (infl. point depends on y & n)
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Formal result (y ∈ (−1, 0))

If y is such that |y | ≤ c/n, then the situation is fine: the sequence
k 7→ |Rn,k | is decreasing

Otherwise, the situation is bad. Along the parareal iterations, the
error gets very large:

max
k∈{0,...,n}

|Rn,k | ≥
Cy√
n

(Dy )n

for some Dy > 1 only depending on y (which, we recall, quantifies
how much the two models differ):

at fixed y , the error gets exponentially large as a function of n
the rate Dy increases when |y | ∈ (0, 1) increases
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Numerical illustration (y ∈ (−1, 0))

Plot of k 7→ Rn,k for n = 1000

For ω = 0.1 and n = 1000, we get y < 0 and p ≈ 42. We indeed observe

that |Rn,k | is maximal (and very large!) for k = p ≈ n|y |
1 + |y |

.

These results provide a complete understanding of the error for this
oversimplified model, which is illustrative of the general situation
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Adaptive algorithm

Relative error E ≡ relative error between consecutive trajectories

On the time-slab [0,N∆T ], we run the parareal algorithm until E is

either smaller than the convergence threshold δconv
or larger than an explosion threshold δexpl (attained at parareal
iteration # kcur)

In the blow-up case, for the parareal iteration kcur, we find the first
time iteration 1 + m̃1 ≤ N for which E exceeds δexpl, and we shorten
the slab to [0, m̃1∆T ].

We then proceed with the parareal iterations on the slab [0, m̃1∆T ],
that we possibly further shorten, until the relative error (on
[0, m̃1∆T ]) is smaller than δconv.

Once we have converged on [0, m̃1∆T ], we proceed with the next
part of the time range and define the new (tentative) time-slab as
[m̃1∆T ,N∆T ].
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Explosion threshold

The slab sizes are such that E ≤ δexpl:

if δexpl is chosen large, the adaptive criterion is never triggered:
vanilla parareal

if δexpl is chosen small, the slabs are short: no parallelism anymore

the optimal choice of δexpl is somewhere in-between

List of the sizes of the time-slabs found by the algorithm:
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Harmonic model, ω = 0.1, ∆T = 0.05, β = γ = 3, N = 5000
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Gain
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For moderate values of δexpl, the gain seems independent of N

For large N, the adaptive algorithm always outperforms the classical
version (gain ≈ 30 for Har-1d, gain ≈ 7 for LJ7-2d)
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Conclusions on this part

The trajectories provided by the classical parareal algorithm are far
away from the reference trajectories: not only trajectorial accuracy is
poor, but statistical accuracy is poor as well

The adaptive algorithm always outperforms the classical version

F.L., T. Lelièvre and U. Sharma, SIAM J. Scientific Computing 2022
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Applications to the simulation of
self-interstitial atoms in tungsten

Joint work with O. Gorynina, T. Lelièvre and D. Perez
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Our aim

We consider a BCC lattice of 128 tungsten atoms (with periodic
boundary conditions)

We add a self-interstitial atom (SIA)

At the temperature of 2000 K and for γ−1 = 1 ps:

the system is metastable
the activation energy is sufficiently small to observe several jumps of
the SIA within affordable trajectories

Quantities of interest:

list of the residence times ≡ time spent by the SIA in a given well
before jumping into another well (monitor “pathwise accuracy”)
distribution of the residence times (monitor “statistical accuracy”)

Time step: δt = 2 fs
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Fine and coarse potentials

fine (reference) potential Vf : SNAP potential [Thompson et al, J.
Comput. Phys. 2015]:

an empirical potential with several hundreds of parameters
adjusted using Machine Learning techniques on DFT results (lattice
constants, elastic constants, . . . )
very accurate and very expensive!

coarse potential Vc : EAM potential [Daw and Baskes, PRB 1984]

Computational time required to perform 5000 steps of Langevin scheme:

Potential time (in sec. on a standard laptop)

Vc (EAM) 0.6923
Vf (SNAP) 1788

Although Vc is much cheaper than Vf , we will compute the actual gain, without

assuming that Cost Vc is negligible vs Cost Vf .
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Implementation in LAMMPS

xk+1
n+1 = C∆T (xk+1

n ) + F∆T (xkn )− C∆T (xkn )

We implemented the parareal algorithm in a non-intrusive manner in
LAMMPS:

master code: in Python

for given xkn = (qkn , p
k
n ),

Python requests LAMMPS to advance the system (using either Vf or
Vc) over a time ∆T (by possibly using several time steps δt), thereby
computing F∆T (xkn ) and C∆T (xkn )
the jumps F∆T (xkn )− C∆T (xkn ) are computed by Python

in the sequential part, Python first requests LAMMPS to compute
C∆T (xk+1

n ) and second adds the jump to obtain xk+1
n+1

the parareal procedure is implemented in Python and LAMMPS is
used as a legacy code
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Time-stepping scheme of LAMMPS – 1

BBK scheme [Brunger, Brooks and Karplus, Chem. Phys. Lett. 1984]:

General expression (for ` ≥ 1):

p`+1/2 = p` −
δt

2
∇V (q`)− δt

2
γ p`−1/2 +

1

2

√
2γβ−1δt G`

q`+1 = q` + p`+1/2 δt

p`+1 = p`+1/2 −
δt

2
∇V (q`+1)− δt

2
γ p`+1/2 +

1

2

√
2γβ−1δt G`+1

The same Gaussian increment is used at the third line to compute p`+1 and at the
first line of the next iteration to compute p(`+1)+1/2

Very easy to implement on the basis of a Verlet scheme:

p`+1/2 = p` +
δt

2
F (q`)

q`+1 = q` + p`+1/2 δt

Compute the new force F (q`+1)

p`+1 = p`+1/2 +
δt

2
F (q`+1)

Here, the force F depends on q and p and is the sum of a potential force, a
friction force and a random force
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Time-stepping scheme of LAMMPS – 2

BBK scheme [Brunger, Brooks and Karplus, Chem. Phys. Lett. 1984]:

General expression (for ` ≥ 1):

p`+1/2 = p` −
δt

2
∇V (q`)− δt

2
γ p`−1/2 +

1

2

√
2γβ−1δt G`

q`+1 = q` + p`+1/2 δt

p`+1 = p`+1/2 −
δt

2
∇V (q`+1)− δt

2
γ p`+1/2 +

1

2

√
2γβ−1δt G`+1

For ` = 0, the scheme needs to be adjusted since p`−1/2 is not defined.

Scheme for ` = 0:

p`+1/2 = p` −
δt

2
∇V (q`)− δt

2
γ p` +

1

2

√
2γβ−1δt G`

q`+1 = q` + p`+1/2 δt

p`+1 = p`+1/2 −
δt

2
∇V (q`+1)− δt

2
γ p`+1/2 +

1

2

√
2γβ−1δt G`+1

In addition, to go from (q0, p0) to (q1, p1), two Gaussian increments G0 and G1 are
used (in contrast to the next steps).

These specific features have no consequence only if many steps of the BBK algorithm
are performed . . .
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Time-stepping scheme of LAMMPS – 3

Consider our parareal implementation, and assume V ≡ 0. To reach the final
time T = N ∆T using a scheme with the time step δt = ∆T/L, we do:

For n = 1 to N do

enter LAMMPS
perform L time steps of the BBK scheme of length δt
exit LAMMPS

The equilibrium distribution of the {pn L}n≥0 (momenta when exiting LAMMPS)
can be computed: it is a Gaussian distribution with variance

σL = β−1

(
1− 1

2L

)
rather than β−1

L β−1 Empirical variance of {pn L}0≤n≤N N σL

1 300 157 20000 150
1 600 303 20000 300

10 300 280 20000 285
100 300 303.46 20000 298

OK if L� 1, but nok if L is small!
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Time-stepping scheme of LAMMPS – 4

Suggestion: use a time-dependent temperature:

General expression (for ` ≥ 1):

p`+1/2 = p` −
δt

2
∇V (q`)−

δt

2
γ p`−1/2 +

1

2

√
2γβ−1

` δt G`

q`+1 = q` + p`+1/2 δt

p`+1 = p`+1/2 −
δt

2
∇V (q`+1)− δt

2
γ p`+1/2 +

1

2

√
2γβ−1

` δt G`+1

For ` = 0, we again replace p`−1/2 by p`

We write β−1
` = C` β

−1 and identify C` such that

Var p0 = β−1 =⇒ Var p` = β−1 for any ` ≥ 1

We find C0 = 2 and
√
C` =

(√
C`−1 + 8−

√
C`−1

)
/2

L β−1 Empirical variance of {pn L}0≤n≤N N

1 300 303 20000
10 300 294 20000
10 300 297 200000
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Reference results

History of residence times on a single trajectory:

[122, 23, 27, 476, 14, 32, 560, 245] × δt

Distribution of residence times (25 trajectories of 2000 time steps):

Mean residence time: Tmean = 373× δt, confidence interval [278; 469]× δt

EAM trajectory is wrong: Tmean = 91× δt, confid. interval [81; 100]× δt
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Parareal results, pathwise accuracy

reference residence times

[122, 23, 27, 476, 14, 32, 560, 245]

δexpl δconv parareal residence times

0.35 10−5 [63, 27, 16, 36, 19, 34, 332, 972]
0.35 10−10 [122, 23, 27, 476, 14, 32, 575, 15, 28, 31, 156]

For the convergence threshold δconv = 10−10, pathwise accuracy is
reached.

This is not the case for δconv = 10−5

What about statistical accuracy?
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Parareal results, statistical accuracy (δconv = 10−10)

Reference results: Tmean = 373× δt, confidence interval [278; 469]× δt

Parareal results: Tmean = 372× δt, confidence interval [278; 466]× δt

Excellent accuracy (even though noise and IC are different on reference
and parareal results)
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Parareal results, statistical accuracy (δconv = 10−3)

Reference results: Tmean = 373× δt, confidence interval [278; 469]× δt

Parareal results: Tmean = 320× δt, confidence interval [246; 394]× δt

Very good statistical accuracy (overlapping confidence intervals!), while no
pathwise accuracy for this value of δconv

Frédéric Legoll (ENPC & Inria) ANR QuAMProcs workshop 8-9 March 2022 37 / 40



Parareal results, statistical accuracy (δconv = 10−1)

Reference results: Tmean = 373× δt, confidence interval [278; 469]× δt

Parareal results: Tmean = 1.21× δt, confidence interval [1.19; 1.24]× δt

No accuracy at all (δconv is too large)
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Gain

Gain (δt = 2 fs and δconv = 10−3):

δexpl Nfinal Theo. gain Actual gain # time-slabs to reach Nfinal

0.15 2000 4.73 4.68 90
0.20 2000 4.84 4.77 61
0.25 2000 5.06 4.95 38
0.30 2000 5.28 5.09 23
0.35 2000 5.45 5.12 13
0.40 2000 3.67 3.02 4

The gain slightly decreases if δconv decreases.

The gain increases if δt decreases: gain ≈ 16 for δt = 0.5 fs
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Conclusions

Non-intrusive implementation within LAMMPS is possible

this allows to consider realistic systems
needs appropriate adjustement of time-scheme

If δconv is sufficiently small, then pathwise accuracy on the history of
residence times

Regime of intermediate δconv where no pathwise accuracy but very
good statistical accuracy

Significant computational gains are achieved on systems of physical
interest

Support of ANR (through project CINE-PARA) and of EuroHPC (through project

TIME-X) are gratefully acknowledged
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