Parareal algorithms for molecular dynamics simulations

Frédéric Legoll
Ecole des Ponts & Inria Paris

Joint with T. Lelièvre, D. Perez, U. Sharma and O. Gorynina

ANR QuAMProcs workshop, Inria Paris, 8-9 March 2022
Motivation

This work is motivated by molecular simulation, where we often have to simulate long trajectories of complex systems.

Typical dynamics: the Langevin equation

\[dq_t = p_t \, dt, \quad dp_t = -\nabla V(q_t) \, dt - \gamma \, p_t \, dt + \sqrt{2\gamma \beta^{-1}} \, dW_t \]
Outline

- Since we have to simulate long-time trajectories, it seems attractive to use the parareal algorithm, which solves initial value problems by parallel-in-time computations (domain-decomposition fashion)
Since we have to simulate long-time trajectories, it seems attractive to use the parareal algorithm, which solves initial value problems by parallel-in-time computations (domain-decomposition fashion). It turns out that this algorithm is not stable for MD problems when the time horizon is too large.
Since we have to simulate long-time trajectories, it seems attractive to use the parareal algorithm, which solves initial value problems by parallel-in-time computations (domain-decomposition fashion).

It turns out that this algorithm is not stable for MD problems when the time horizon is too large.

We therefore introduce an adaptive parareal algorithm, which performs simulations on shorter time slabs and paste them together, thereby allowing for a significant CPU gain.

Application to the simulation in LAMMPS of self-interstitial atoms diffusing in a tungsten lattice.

Parallel in time algorithm for ODEs

\[\frac{dx}{dt} = f(x), \quad x \in \mathbb{R}^d \]

The parareal algorithm (Lions, Maday and Turinici, 2001) is based upon two integrators to propagate the system over a time \(\Delta T \):

- a fine, accurate integrator \(F \)
- a cheap coarse integrator \(C \)

For instance, \(F = (\Phi \delta t F) \Delta T / \delta t F \) and \(C = (\Phi \delta t C) \Delta T / \delta t C \) with \(\delta t F \ll \delta t C \)

where \(\Phi \delta t \) is a one time step propagator.
Parallel in time algorithm for ODEs

\[\frac{dx}{dt} = f(x), \quad x \in \mathbb{R}^d \]

The parareal algorithm (Lions, Maday and Turinici, 2001) is based upon two integrators to propagate the system over a time \(\Delta T \):

- a fine, accurate integrator \(F_{\Delta T} \)
- a cheap coarse integrator \(C_{\Delta T} \)

For instance,

\[F_{\Delta T} = (\Phi_{\delta t_F})^{\Delta T/\delta t_F} \quad \text{and} \quad C_{\Delta T} = (\Phi_{\delta t_C})^{\Delta T/\delta t_C} \quad \text{with} \quad \delta t_F \ll \delta t_C \]

where \(\Phi_{\delta t} \) is a one time step propagator
The parareal iterative procedure

- Initialization: coarse propagation that yields \(\{x^{k=0}_n\}_n \):

\[\forall n, \quad x^{k=0}_{n+1} = C \Delta T(x^{k=0}_n) \]
The parareal iterative procedure

- Initialization: coarse propagation that yields \(\{ x_n^{k=0} \} \):
 \[
 \forall n, \quad x_{n+1}^{k=0} = C_{\Delta T}(x_n^{k=0})
 \]
- Iterate over \(k \geq 0 \):
The parareal iterative procedure

- Initialization: coarse propagation that yields \(\{ x_n^{k=0} \} \):
 \[
 \forall n, \quad x_{n+1}^{k=0} = C_{\Delta T}(x_n^{k=0})
 \]

- Iterate over \(k \geq 0 \):
 - compute jumps (in parallel):
 \[
 J_n^k = F_{\Delta T}(x_n^k) - C_{\Delta T}(x_n^k)
 \]
The parareal iterative procedure

- **Initialization:** coarse propagation that yields \(\{ x_{n}^{k=0} \} \):
 \[
 \forall n, \quad x_{n+1}^{k=0} = C \Delta T(x_{n}^{k=0})
 \]

- Iterate over \(k \geq 0 \):
 - compute jumps (in parallel):
 \[
 J_{n}^{k} = F \Delta T(x_{n}^{k}) - C \Delta T(x_{n}^{k})
 \]
 - sequential update to obtain \(\{ x_{n}^{k+1} \} \):
 \[
 \forall n, \quad x_{n+1}^{k+1} = C \Delta T(x_{n}^{k+1}) + J_{n}^{k}
 \]
The parareal iterative procedure

- Initialization: coarse propagation that yields \(\{x_n^{k=0}\}_n \):
 \[
 \forall n, \quad x_{n+1}^{k=0} = C_\Delta T(x_n^{k=0})
 \]

- Iterate over \(k \geq 0 \):
 - compute jumps (in parallel):
 \[
 J_n^k = \mathcal{F}_\Delta T(x_n^k) - C_\Delta T(x_n^k)
 \]
 - sequential update to obtain \(\{x_n^{k+1}\}_n \):
 \[
 \forall n, \quad x_{n+1}^{k+1} = C_\Delta T(x_n^{k+1}) + J_n^k
 \]

The fine solver is called only in the parallel part of the algorithm.
The parareal iterations converge (when $k \to \infty$) to the solution of the reference dynamics

$$x_{n+1} = \mathcal{F}_{\Delta T}(x_n)$$

This comes from the fact that $x_n^k = \mathcal{F}_{\Delta T}^n(x_0)$ whenever $k \geq n$.

In practice, for many applications, convergence is observed in much fewer iterations.

In MD, we often run simulations with time steps chosen just below the stability limit (this often provides sufficient accuracy on the quantities of interest).

There is hence no room for choosing $\delta t_C \gg \delta t_F$.
We thus turn to a different paradigm where $C_{\Delta T}$ integrates a simpler dynamics than $F_{\Delta T}$ (say with the same time step).

In our setting, $F_{\Delta T}$ integrates the original Langevin dynamics (with the reference potential $V_f \equiv V$) whereas $C_{\Delta T}$ integrates a Langevin dynamics run on a simplified (cheaper to compute) potential V_c.

The Gaussian increments (in the numerical scheme used to integrate the Langevin equation) are the same for $F_{\Delta T}$ and $C_{\Delta T}$ and over all parareal iterations (to ensure as best as possible trajectorial convergence).

Similar paradigm (in terms of V_f vs V_c) in [Baffico et al, PRE 2002]
Simulations on toy model problems
Two model problems

- A quadratic model in 1D:

\[V_f(q) = \frac{q^2}{2}, \quad V_c(q) = \omega \frac{q^2}{2} \]

for some \(\omega > 0 \)

Simple enough to be amenable to theoretical analysis, and exhibits the same issues as those appearing with more complex models.
Two model problems

- A quadratic model in 1D:
 \[V_f(q) = \frac{q^2}{2}, \quad V_c(q) = \omega \frac{q^2}{2} \text{ for some } \omega > 0 \]
 Simple enough to be amenable to theoretical analysis, and exhibits the same issues as those appearing with more complex models.

- A slightly less simple model: a 7-atom Lennard-Jones cluster in 2D:
 \[V_f(q) = \frac{1}{2} \sum_{i,j \in \{1,\ldots,7\}, \ i \neq j} \phi_f(|q^i - q^j|), \quad \phi_f(r) = r^{-12} - 2r^{-6} \]
 \(V_c \equiv \text{harm. approx. of } V_f \text{ at the global minimum (the initial condition is chosen in the corresponding well)}. \]
Convergence criteria

- Relative error between consecutive parareal trajectories:

\[
E(k, N) = \frac{\sum_{n=1}^{N} |q_n^k - q_n^{k-1}|}{\sum_{n=1}^{N} |q_n^{k-1}|}.
\]

- By construction, we have \(q_n^k = q(n \Delta T) \) for any \(k \geq n \), and thus \(E(k, N) = 0 \) for \(k \geq N + 1 \)

- We stop the algorithm at the first parareal iteration \(\bar{k} \) for which

\[
E(\bar{k}, N) < \delta_{\text{conv}} = 10^{-5}
\]
Convergence criteria

- Relative error between consecutive parareal trajectories:

\[E(k, N) = \frac{\sum_{n=1}^{N} |q_n^k - q_n^{k-1}|}{\sum_{n=1}^{N} |q_n^{k-1}|}. \]

- By construction, we have \(q_n^k = q(n\Delta T) \) for any \(k \geq n \), and thus \(E(k, N) = 0 \) for \(k \geq N + 1 \).

- We stop the algorithm at the first parareal iteration \(\bar{k} \) for which

\[E(\bar{k}, N) < \delta_{\text{conv}} = 10^{-5} \]

- The gain is then

\[\text{gain} = \frac{N}{k} = \frac{\# \text{ fine propagations for a sequential algorithm}}{\# \text{ fine propagations for the parareal algorithm}} \]

\(E_f(k, N) = \) relative error with respect to the reference trajectory
Instability at large times

Plot of $E_f(k, N)$ as a function of k:

- For small N, fast convergence of the parareal iterations (gain ≈ 10)
- For large N, the error increases to large values when k increases (because the trajectory goes far away), before eventually converging

Harmonic model, $\omega = 0.1$, $\Delta T = 0.05$, $\beta = 3$
Gain as a function of N and ω

- Fixed coarse model: the gain decreases to 1 when N increases
- Fixed N: the gain decreases when the coarse model differs too much from the fine one

Harmonic model, $\Delta T = 0.05$, $\beta = 3$
Theoretical analysis on a toy problem – 1

- Reference problem: \(V_f(x) = \frac{x^2}{2} \) and
 \[
 \frac{dx}{dt} = -V'_f(x) = -x
 \]
 Fine integrator (exact integrator over \(\Delta T \)):
 \[
 \mathcal{F}_{\Delta T}(x) = \exp(-\Delta T) \times
 \]

- Coarse model: \(V_c(x) = \omega \times \frac{x^2}{2} \) and
 \[
 \frac{dx}{dt} = -V'_c(x) = -\omega \times
 \]
 Coarse integrator (exact integrator over \(\Delta T \)):
 \[
 \mathcal{C}_{\Delta T}(x) = \exp(-\omega \Delta T) \times
 \]

Overdamped dynamics without noise
Theoretical analysis on a toy problem – 2

We study the relative error at the terminal point

\[R_{n,k} = \frac{x(n\Delta T) - x_n^k}{x(n\Delta T)} = \frac{x_n^n - x_n^k}{x_n^n} \]

as a function of \(k \), for various choices

- of the trajectory length \(n \)
- and of

\[y = \frac{\mathcal{F}_{\Delta T}}{\mathcal{C}_{\Delta T}} - 1 \in (-1, \infty) \]

which quantifies how much the coarse and the fine model differ

(\(\omega = 1 \) iff \(y = 0 \)).
Formal result \((y > 0)\)

In the case \(y > 0\), then

\[
0 < R_{n,k} \leq 1 \quad \text{and} \quad k \mapsto R_{n,k} \text{ is decreasing}
\]

- If \(y\) is such that \(y \leq c/n\) (the coarse model is very close to the fine; the longer the trajectory, the closer the models should be), then

\[
k \mapsto R_{n,k} \text{ is convex}
\]
Formal result \((y > 0)\)

In the case \(y > 0\), then

\[0 < R_{n,k} \leq 1\]

and

\[k \mapsto R_{n,k}\] is decreasing

- If \(y\) is such that \(y \leq c/n\) (the coarse model is very close to the fine; the longer the trajectory, the closer the models should be), then
 \[k \mapsto R_{n,k}\] is convex

- If \(y\) is such that \(y \geq c n\) (the coarse model is very different from the fine), then
 \[k \mapsto R_{n,k}\] is concave

- If \(y\) is in-between, then there exists \(\bar{p} \approx \frac{n|y|}{1 + |y|} \in [1, n]\) such that
 \[k \mapsto R_{n,k}\] is concave for \(1 \leq k \leq \bar{p}\) and convex for \(\bar{p} \leq k \leq n\)
Numerical illustration \((y > 0)\)

The error (as a function of \(k\)) is

- convex for \(\omega = 1.02\) (excellent convergence)
- concave for \(\omega = 160\) (error close to 100\% for almost all \(k\) . . .
- concave then convex for in-between \(\omega\) (infl. point depends on \(y\) & \(n\))
Formal result \((y \in (-1, 0))\)

- If \(y\) is such that \(|y| \leq c/n\), then the situation is fine: the sequence \(k \mapsto |R_{n,k}|\) is decreasing.

- Otherwise, the situation is bad. Along the parareal iterations, the error gets very large:

\[
\max_{k \in \{0, \ldots, n\}} |R_{n,k}| \geq \frac{C_y}{\sqrt{n}} (D_y)^n
\]

for some \(D_y > 1\) only depending on \(y\) (which, we recall, quantifies how much the two models differ):

- at fixed \(y\), the error gets exponentially large as a function of \(n\)
- the rate \(D_y\) increases when \(|y| \in (0, 1)\) increases.
Numerical illustration \((y \in (-1, 0)) \)

For \(\omega = 0.1 \) and \(n = 1000 \), we get \(y < 0 \) and \(\bar{p} \approx 42 \). We indeed observe that \(|R_{n,k}| \) is maximal (and very large!) for \(k = \bar{p} \approx \frac{n|y|}{1 + |y|} \).

These results provide a complete understanding of the error for this oversimplified model, which is illustrative of the general situation.
Adaptive algorithm

Relative error

\[E \equiv \text{relative error between consecutive trajectories} \]

On the time-slab \([0, N \Delta T]\), we run the parareal algorithm until \(E\) is either smaller than the convergence threshold \(\delta_{\text{conv}}\) or larger than an explosion threshold \(\delta_{\text{expl}}\) (attained at parareal iteration \(k_{\text{cur}}\)).

In the blow-up case, for the parareal iteration \(k_{\text{cur}}\), we find the first time iteration \(1 + \tilde{m} \leq N\) for which \(E\) exceeds \(\delta_{\text{expl}}\), and we shorten the slab to \([0, \tilde{m} \Delta T]\).

We then proceed with the parareal iterations on the slab \([0, \tilde{m} \Delta T]\), that we possibly further shorten, until the relative error (on \([0, \tilde{m} \Delta T]\)) is smaller than \(\delta_{\text{conv}}\).

Once we have converged on \([0, \tilde{m} \Delta T]\), we proceed with the next part of the time range and define the new (tentative) time-slab as \([\tilde{m} \Delta T, N \Delta T]\).
Adaptive algorithm

Relative error $E \equiv$ relative error between consecutive trajectories

- On the time-slab $[0, N\Delta T]$, we run the parareal algorithm until E is
 - either smaller than the convergence threshold δ_{conv}
 - or larger than an explosion threshold δ_{expl} (attained at parareal iteration $\# k_{\text{cur}}$)
Adaptive algorithm

Relative error $E \equiv$ relative error between consecutive trajectories

- On the time-slab $[0, N\Delta T]$, we run the parareal algorithm until E is
 - either smaller than the convergence threshold δ_{conv}
 - or larger than an explosion threshold δ_{expl} (attained at parareal iteration $\neq k_{\text{cur}}$)

- In the blow-up case, for the parareal iteration k_{cur}, we find the first time iteration $1 + \tilde{m}_1 \leq N$ for which E exceeds δ_{expl}, and we shorten the slab to $[0, \tilde{m}_1\Delta T]$.

- We then proceed with the parareal iterations on the slab $[0, \tilde{m}_1\Delta T]$, that we possibly further shorten, until the relative error (on $[0, \tilde{m}_1\Delta T]$) is smaller than δ_{conv}.
Adaptive algorithm

Relative error $E \equiv$ relative error between consecutive trajectories

- On the time-slab $[0, N\Delta T]$, we run the parareal algorithm until E is
 - either smaller than the convergence threshold δ_{conv}
 - or larger than an explosion threshold δ_{expl} (attained at parareal iteration $\# k_{\text{cur}}$)

- In the blow-up case, for the parareal iteration k_{cur}, we find the first time iteration $1 + \tilde{m}_1 \leq N$ for which E exceeds δ_{expl}, and we shorten the slab to $[0, \tilde{m}_1\Delta T]$.

- We then proceed with the parareal iterations on the slab $[0, \tilde{m}_1\Delta T]$, that we possibly further shorten, until the relative error (on $[0, \tilde{m}_1\Delta T]$) is smaller than δ_{conv}.

- Once we have converged on $[0, \tilde{m}_1\Delta T]$, we proceed with the next part of the time range and define the new (tentative) time-slab as $[\tilde{m}_1\Delta T, N\Delta T]$.
Explosion threshold

The slab sizes are such that $E \leq \delta_{\text{expl}}$:

- if δ_{expl} is chosen large, the adaptive criterion is never triggered: vanilla parareal
- if δ_{expl} is chosen small, the slabs are short: no parallelism anymore
- the optimal choice of δ_{expl} is somewhere in-between

List of the sizes of the time-slabs found by the algorithm:

Harmonic model, $\omega = 0.1$, $\Delta T = 0.05$, $\beta = \gamma = 3$, $N = 5000$
Gain

For moderate values of δ_{expl}, the gain seems independent of N.

For large N, the adaptive algorithm always outperforms the classical version (gain ≈ 30 for Har-1d, gain ≈ 7 for LJ7-2d).
Conclusions on this part

- The trajectories provided by the classical parareal algorithm are far away from the reference trajectories: not only trajectorial accuracy is poor, but statistical accuracy is poor as well.

- The adaptive algorithm always outperforms the classical version.

F.L., T. Lelièvre and U. Sharma, SIAM J. Scientific Computing 2022

Support of ANR (through project CINE-PARA) and of EuroHPC (through project TIME-X) are gratefully acknowledged.
Applications to the simulation of self-interstitial atoms in tungsten

Joint work with O. Gorynina, T. Lelièvre and D. Perez
Our aim

- We consider a BCC lattice of 128 tungsten atoms (with periodic boundary conditions)
- We add a self-interstitial atom (SIA)
- At the temperature of 2000 K and for $\gamma^{-1} = 1$ ps:
 - the system is metastable
 - the activation energy is sufficiently small to observe several jumps of the SIA within affordable trajectories
- Quantities of interest:
 - list of the residence times \equiv time spent by the SIA in a given well before jumping into another well (monitor “pathwise accuracy”)
 - distribution of the residence times (monitor “statistical accuracy”)

Time step: $\delta t = 2$ fs
Fine and coarse potentials

 - an empirical potential with several hundreds of parameters
 - adjusted using Machine Learning techniques on DFT results (lattice constants, elastic constants, . . .)
 - very accurate and very expensive!

- **coarse potential** V_c: EAM potential [Daw and Baskes, PRB 1984]

Computational time required to perform 5000 steps of Langevin scheme:

<table>
<thead>
<tr>
<th>Potential</th>
<th>time (in sec. on a standard laptop)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_c (EAM)</td>
<td>0.6923</td>
</tr>
<tr>
<td>V_f (SNAP)</td>
<td>1788</td>
</tr>
</tbody>
</table>

Although V_c is much cheaper than V_f, we will compute the actual gain, without assuming that Cost V_c is negligible vs Cost V_f.
\[x_{n+1}^{k+1} = C_{\Delta T}(x_n^{k+1}) + \mathcal{F}_{\Delta T}(x_n^k) - C_{\Delta T}(x_n^k) \]

We implemented the parareal algorithm in a non-intrusive manner in LAMMPS:

- master code: in Python
- for given \(x_n^k = (q_n^k, p_n^k) \),
 - Python requests LAMMPS to advance the system (using either \(V_f \) or \(V_c \)) over a time \(\Delta T \) (by possibly using several time steps \(\delta t \)), thereby computing \(\mathcal{F}_{\Delta T}(x_n^k) \) and \(C_{\Delta T}(x_n^k) \)
 - the jumps \(\mathcal{F}_{\Delta T}(x_n^k) - C_{\Delta T}(x_n^k) \) are computed by Python
- in the sequential part, Python first requests LAMMPS to compute \(C_{\Delta T}(x_n^{k+1}) \) and second adds the jump to obtain \(x_{n+1}^{k+1} \)
- the parareal procedure is implemented in Python and LAMMPS is used as a legacy code
Time-stepping scheme of LAMMPS – 1

- General expression (for $\ell \geq 1$):

 \[
 p_{\ell+1/2} = p_{\ell} - \frac{\delta t}{2} \nabla V(q_{\ell}) - \frac{\delta t}{2} \gamma p_{\ell-1/2} + \frac{1}{2} \sqrt{2\gamma \beta^{-1}} \delta t \, G_{\ell}
 \]

 \[
 q_{\ell+1} = q_{\ell} + p_{\ell+1/2} \, \delta t
 \]

 \[
 p_{\ell+1} = p_{\ell+1/2} - \frac{\delta t}{2} \nabla V(q_{\ell+1}) - \frac{\delta t}{2} \gamma p_{\ell+1/2} + \frac{1}{2} \sqrt{2\gamma \beta^{-1}} \delta t \, G_{\ell+1}
 \]

- The same Gaussian increment is used at the third line to compute $p_{\ell+1}$ and at the first line of the next iteration to compute $p_{(\ell+1)+1/2}$
Time-stepping scheme of LAMMPS – 1

- **General expression (for \(\ell \geq 1 \)):**

 \[
 \begin{align*}
 p_{\ell+1/2} &= p_{\ell} - \frac{\delta t}{2} \nabla V(q_{\ell}) - \frac{\delta t}{2} \gamma p_{\ell-1/2} + \frac{1}{2} \sqrt{2\gamma \beta^{-1} \delta t} \ G_{\ell} \\
 q_{\ell+1} &= q_{\ell} + p_{\ell+1/2} \ \delta t \\
 p_{\ell+1} &= p_{\ell+1/2} - \frac{\delta t}{2} \nabla V(q_{\ell+1}) - \frac{\delta t}{2} \gamma p_{\ell+1/2} + \frac{1}{2} \sqrt{2\gamma \beta^{-1} \delta t} \ G_{\ell+1}
 \end{align*}
 \]

- The same Gaussian increment is used at the third line to compute \(p_{\ell+1} \) and at the first line of the next iteration to compute \(p_{(\ell+1)+1/2} \)

- Very easy to implement on the basis of a Verlet scheme:

 \[
 \begin{align*}
 p_{\ell+1/2} &= p_{\ell} + \frac{\delta t}{2} F(q_{\ell}) \\
 q_{\ell+1} &= q_{\ell} + p_{\ell+1/2} \ \delta t \\
 \text{Compute the new force } F(q_{\ell+1}) \\
 p_{\ell+1} &= p_{\ell+1/2} + \frac{\delta t}{2} F(q_{\ell+1})
 \end{align*}
 \]

Here, the force \(F \) depends on \(q \) and \(p \) and is the sum of a potential force, a friction force and a random force.

Frédéric Legoll (ENPC & Inria)
ANR QuAMProcs workshop
8-9 March 2022
30 / 40
Time-stepping scheme of LAMMPS – 2

- General expression (for $\ell \geq 1$):

 \[
 p_{\ell+1/2} = p_\ell - \frac{\delta t}{2} \nabla V(q_\ell) - \frac{\delta t}{2} \gamma p_{\ell-1/2} + \frac{1}{2} \sqrt{2\gamma \beta^{-1}} \delta t G_\ell \nabla V(q_\ell) - \frac{\delta t}{2} \gamma p_{\ell+1/2} + \frac{1}{2} \sqrt{2\gamma \beta^{-1}} \delta t G_{\ell+1}
 \]

 \[q_{\ell+1} = q_\ell + p_{\ell+1/2} \delta t\]

 \[p_{\ell+1} = p_{\ell+1/2} - \frac{\delta t}{2} \nabla V(q_{\ell+1}) - \frac{\delta t}{2} \gamma p_{\ell+1/2} + \frac{1}{2} \sqrt{2\gamma \beta^{-1}} \delta t G_{\ell+1}\]

For $\ell = 0$, the scheme needs to be adjusted since $p_{\ell-1/2}$ is not defined.
Time-stepping scheme of LAMMPS – 2

- **General expression (for \(\ell \geq 1 \)):**

\[
p_{\ell+1/2} = p_\ell - \frac{\delta t}{2} \nabla V(q_\ell) - \frac{\delta t}{2} \gamma p_{\ell-1/2} + \frac{1}{2} \sqrt{2\gamma \beta^{-1} \delta t} \ G_\ell
\]

\[
q_{\ell+1} = q_\ell + p_{\ell+1/2} \ \delta t
\]

\[
p_{\ell+1} = p_{\ell+1/2} - \frac{\delta t}{2} \nabla V(q_{\ell+1}) - \frac{\delta t}{2} \gamma p_{\ell+1/2} + \frac{1}{2} \sqrt{2\gamma \beta^{-1} \delta t} \ G_{\ell+1}
\]

For \(\ell = 0 \), the scheme needs to be adjusted since \(p_{\ell-1/2} \) is not defined.

- **Scheme for \(\ell = 0 \):**

\[
p_{\ell+1/2} = p_\ell - \frac{\delta t}{2} \nabla V(q_\ell) - \frac{\delta t}{2} \gamma p_{\ell} + \frac{1}{2} \sqrt{2\gamma \beta^{-1} \delta t} \ G_\ell
\]

\[
q_{\ell+1} = q_\ell + p_{\ell+1/2} \ \delta t
\]

\[
p_{\ell+1} = p_{\ell+1/2} - \frac{\delta t}{2} \nabla V(q_{\ell+1}) - \frac{\delta t}{2} \gamma p_{\ell+1/2} + \frac{1}{2} \sqrt{2\gamma \beta^{-1} \delta t} \ G_{\ell+1}
\]

- **In addition, to go from \((q_0, p_0)\) to \((q_1, p_1)\), two Gaussian increments \(G_0 \) and \(G_1 \) are used (in contrast to the next steps).**

These specific features have no consequence only if many steps of the BBK algorithm are performed . . .
Consider our parareal implementation, and assume $V \equiv 0$. To reach the final time $T = N \Delta T$ using a scheme with the time step $\delta t = \Delta T / L$, we do:

- For $n = 1$ to N do
 - enter LAMMPS
 - perform L time steps of the BBK scheme of length δt
 - exit LAMMPS

The equilibrium distribution of the $\{p_{nL}\}_{n \geq 0}$ (momenta when exiting LAMMPS) can be computed: it is a Gaussian distribution with variance

$$\sigma_L = \beta^{-1} \left(1 - \frac{1}{2L} \right) \text{ rather than } \beta^{-1}$$
Consider our parareal implementation, and assume $V \equiv 0$. To reach the final time $T = N \Delta T$ using a scheme with the time step $\delta t = \Delta T / L$, we do:

- For $n = 1$ to N do
 - enter LAMMPS
 - perform L time steps of the BBK scheme of length δt
 - exit LAMMPS

The equilibrium distribution of the $\{p_{nL}\}_{n \geq 0}$ (momenta when exiting LAMMPS) can be computed: it is a Gaussian distribution with variance

$$\sigma_L = \beta^{-1} \left(1 - \frac{1}{2L}\right)$$

rather than β^{-1}

<table>
<thead>
<tr>
<th>L</th>
<th>β^{-1}</th>
<th>Empirical variance of ${p_{nL}}_{0 \leq n \leq N}$</th>
<th>N</th>
<th>σ_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
<td>157</td>
<td>20000</td>
<td>150</td>
</tr>
<tr>
<td>1</td>
<td>600</td>
<td>303</td>
<td>20000</td>
<td>300</td>
</tr>
<tr>
<td>10</td>
<td>300</td>
<td>280</td>
<td>20000</td>
<td>285</td>
</tr>
<tr>
<td>100</td>
<td>300</td>
<td>303.46</td>
<td>20000</td>
<td>298</td>
</tr>
</tbody>
</table>

OK if $L \gg 1$, but nok if L is small!
Suggestion: use a time-dependent temperature:

- General expression (for $\ell \geq 1$):
 \[
 p_{\ell+1/2} = p_{\ell} - \frac{\delta t}{2} \nabla V(q_{\ell}) - \frac{\delta t}{2} \gamma p_{\ell-1/2} + \frac{1}{2} \sqrt{2\gamma \beta_{\ell}^{-1}} \delta t G_{\ell} \\
 q_{\ell+1} = q_{\ell} + p_{\ell+1/2} \delta t \\
 p_{\ell+1} = p_{\ell+1/2} - \frac{\delta t}{2} \nabla V(q_{\ell+1}) - \frac{\delta t}{2} \gamma p_{\ell+1/2} + \frac{1}{2} \sqrt{2\gamma \beta_{\ell}^{-1}} \delta t G_{\ell+1}
 \]

For $\ell = 0$, we again replace $p_{\ell-1/2}$ by p_{ℓ}
Time-stepping scheme of LAMMPS – 4

Suggestion: use a time-dependent temperature:

- General expression (for $\ell \geq 1$):
 \[
 p_{\ell+1/2} = p_\ell - \frac{\delta t}{2} \nabla V(q_\ell) - \frac{\delta t}{2} \gamma p_{\ell-1/2} + \frac{1}{2} \sqrt{2\gamma\beta_{\ell}^{-1}} \delta t G_\ell
 \]
 \[
 q_{\ell+1} = q_\ell + p_{\ell+1/2} \delta t
 \]
 \[
 p_{\ell+1} = p_{\ell+1/2} - \frac{\delta t}{2} \nabla V(q_{\ell+1}) - \frac{\delta t}{2} \gamma p_{\ell+1/2} + \frac{1}{2} \sqrt{2\gamma\beta_{\ell}^{-1}} \delta t G_{\ell+1}
 \]

 For $\ell = 0$, we again replace $p_{\ell-1/2}$ by p_ℓ

- We write $\beta_{\ell}^{-1} = C_{\ell} \beta^{-1}$ and identify C_{ℓ} such that
 \[
 \text{Var } p_0 = \beta^{-1} \implies \text{Var } p_{\ell} = \beta^{-1} \text{ for any } \ell \geq 1
 \]

 We find $C_0 = 2$ and $\sqrt{C_\ell} = (\sqrt{C_{\ell-1}} + 8 - \sqrt{C_{\ell-1}}) / 2$

<table>
<thead>
<tr>
<th>L</th>
<th>β^{-1}</th>
<th>Empirical variance of ${p_{nL}}_{0 \leq n \leq N}$</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
<td>303</td>
<td>20000</td>
</tr>
<tr>
<td>10</td>
<td>300</td>
<td>294</td>
<td>20000</td>
</tr>
<tr>
<td>10</td>
<td>300</td>
<td>297</td>
<td>200000</td>
</tr>
</tbody>
</table>
Reference results

History of residence times on a single trajectory:

\[[122, 23, 27, 476, 14, 32, 560, 245] \times \delta t \]

Distribution of residence times (25 trajectories of 2000 time steps):

Mean residence time: \(T_{\text{mean}} = 373 \times \delta t \), confidence interval \([278; 469] \times \delta t\)
Reference results

History of residence times on a single trajectory:

\[[122, 23, 27, 476, 14, 32, 560, 245] \times \delta t \]

Distribution of residence times (25 trajectories of 2000 time steps):

Mean residence time: \(T_{\text{mean}} = 373 \times \delta t \), confidence interval \([278; 469] \times \delta t \)

EAM trajectory is wrong: \(T_{\text{mean}} = 91 \times \delta t \), confid. interval \([81; 100] \times \delta t \)
Parareal results, pathwise accuracy

<table>
<thead>
<tr>
<th>δ_{expl}</th>
<th>δ_{conv}</th>
<th>Reference residence times</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.35 10^{-5}</td>
<td></td>
<td>[122, 23, 27, 476, 14, 32, 560, 245]</td>
</tr>
<tr>
<td>0.35 10^{-10}</td>
<td></td>
<td>[122, 23, 27, 476, 14, 32, 575, 15, 28, 31, 156]</td>
</tr>
</tbody>
</table>

- For the convergence threshold $\delta_{\text{conv}} = 10^{-10}$, pathwise accuracy is reached.
- This is not the case for $\delta_{\text{conv}} = 10^{-5}$.
- What about statistical accuracy?
Parareal results, statistical accuracy \(\delta_{\text{conv}} = 10^{-10} \)

Reference results: \(T_{\text{mean}} = 373 \times \delta t \), confidence interval \([278; 469] \times \delta t\)

Parareal results: \(T_{\text{mean}} = 372 \times \delta t \), confidence interval \([278; 466] \times \delta t\)

Excellent accuracy (even though noise and IC are different on reference and parareal results)
Parareal results, statistical accuracy \((\delta_{\text{conv}} = 10^{-3})\)

Reference results: \(T_{\text{mean}} = 373 \times \delta t\), confidence interval \([278; 469]\times \delta t\)

Parareal results: \(T_{\text{mean}} = 320 \times \delta t\), confidence interval \([246; 394]\times \delta t\)

Very good statistical accuracy (overlapping confidence intervals!), while no pathwise accuracy for this value of \(\delta_{\text{conv}}\)
Parareal results, statistical accuracy ($\delta_{\text{conv}} = 10^{-1}$)

Reference results: $T_{\text{mean}} = 373 \times \delta t$, confidence interval $[278; 469] \times \delta t$

Parareal results: $T_{\text{mean}} = 1.21 \times \delta t$, confidence interval $[1.19; 1.24] \times \delta t$

No accuracy at all (δ_{conv} is too large)
Gain

Gain ($\delta t = 2$ fs and $\delta_{\text{conv}} = 10^{-3}$):

<table>
<thead>
<tr>
<th>δ_{expl}</th>
<th>N_{final}</th>
<th>Theo. gain</th>
<th>Actual gain</th>
<th># time-slabs to reach N_{final}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>2000</td>
<td>4.73</td>
<td>4.68</td>
<td>90</td>
</tr>
<tr>
<td>0.20</td>
<td>2000</td>
<td>4.84</td>
<td>4.77</td>
<td>61</td>
</tr>
<tr>
<td>0.25</td>
<td>2000</td>
<td>5.06</td>
<td>4.95</td>
<td>38</td>
</tr>
<tr>
<td>0.30</td>
<td>2000</td>
<td>5.28</td>
<td>5.09</td>
<td>23</td>
</tr>
<tr>
<td>0.35</td>
<td>2000</td>
<td>5.45</td>
<td>5.12</td>
<td>13</td>
</tr>
<tr>
<td>0.40</td>
<td>2000</td>
<td>3.67</td>
<td>3.02</td>
<td>4</td>
</tr>
</tbody>
</table>

- The gain slightly decreases if δ_{conv} decreases.
- The gain increases if δt decreases: gain ≈ 16 for $\delta t = 0.5$ fs
Conclusions

- Non-intrusive implementation within LAMMPS is possible
 - this allows to consider realistic systems
 - needs appropriate adjustment of time-scheme

- If δ_{conv} is sufficiently small, then pathwise accuracy on the history of residence times

- Regime of intermediate δ_{conv} where no pathwise accuracy but very good statistical accuracy

- Significant computational gains are achieved on systems of physical interest

Support of ANR (through project CINE-PARA) and of EuroHPC (through project TIME-X) are gratefully acknowledged