

The mathematics and algorithmics of longtime atomistic simulations

Danny Perez Theoretical Division T-1

LA-UR-21-21287

Collaborators/Acknowledgements

- Method development: Arthur Voter
- **Mathematics:** Tony Lelièvre, Claude Le Bris, Mitch Luskin, David Aristoff
- Code: The EXAALT ECP team
- Funding: DOE BES, ECP; LANL LDRD
- Computing: LANL IC, NERSC

What is Molecular Dynamics?

- MD: numerical solution of classical atomic equations of motion
- This talk: Langevin dynamics $m\ddot{x} = -\nabla V(x) - \gamma \dot{x} + \sqrt{2k_BT\gamma}\xi(t)$
- V(x) is material-specific. Usually an empirical approximation to Schrodinger's equation
- Ubiquitous: >1M hit on Google scholar

Why Molecular Dynamics?

H production in Water/AI (Quantum MD)

K. Shimamura et al., "Hydrogenon-Demand Using Metallic Alloy Nanoparticles in Water," Nano Letters, vol. 14, no. 7,2014, pp. 4090–4096 Glotzer, Sharon C., and Michael J. Solomon. "Anisotropy of building blocks and their assembly into complex structures." *Nature materials* 6.8 (2007): 557-562.

Shock Response of coarse grained explosives

Mattox, Timothy I., et al. "Highly scalable discrete-particle simulations with novel coarse-graining: accessing the microscale." *Molecular Physics* 116.15-16 (2018): 2061-2069.

A brief history of MD

Correlations in the Motion of Atoms in Liquid Argon*

A. RAHMAN Argonne National Laboratory, Argonne, Illinois (Received 6 May 1964)

A system of 864 particles interacting with a Lennard-Jones potential and obeying classical equations of motion has been studied on a digital computer (CDC 3600) to simulate molecular dynamics in liquid argon at 94.4°K and a density of 1.374 g cm⁻³. The pair-correlation function and the constant of self-diffusion are found to agree well with experiment; the latter is 15% lower than the experimental value. The spectrum of the velocity autocorrelation function $G_s(r,t)$ attains a maximum departure from a Gaussian at about $t=3.0 \times 10^{-12}$ sec and becomes a Gaussian at about 10^{-11} sec. The Van Hove function $G_d(r,t)$ has been compared with the convolution approximation of Vineyard, showing that this approximation gives a botter fit with $G_d(r,t)$ with time. A delayed-convolution approximation has been suggested which gives a better fit with $G_d(r,t)$; this delayed convolution makes $G_d(r,t)$ decay as t^4 at short times and as t at long times.

864 atoms 20 ps

The Evolution of Supercomputing

http://top500.org

A brief history of MD

- 1959: 32 atoms (Adler et al.)
- 1964: 864 atoms (Rahman)
- ..
- 1996: 100 million atoms (Beazley et al.)
- 2000: 5 billion atoms (Roth et al.)
- 2006: 320 billion atoms (Kadau et al.)
- 2008: 1 trillion atoms (Germann et al.)
- 2013: 4 trillion atoms (Eckhardt et al.)
- 2019: 20 trillion atoms (Tchipev et al.)

ory of MD

Collective Solvation and Transport at Tetrahydrofuran–Silica Interfaces for Separation of Aromatic Compounds: Insight from Molecular Dynamics Simulations

Fei Liang, Jing Ding, and Shule Liu*

MD performance

20

Simulation time = 44 ns

Simulation time = 100 us

D E Shaw Research

The Evolution of Super-Computing

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,299,072	415,530.0	513,854.7	28,335
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
5	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482

Communication required at every step

Parallel MD Most cycles spent here Get forces $F = -\nabla V(r^{(i)})$ and a = F/mMove atoms: $\mathbf{r}^{(i+1)} = \mathbf{r}^{(i)} + \mathbf{v}^{(i)} \Delta t + \frac{1}{2} \mathbf{a} \Delta t^2 + \dots$ Move time forward: $t = t + \Delta t$ Repeat as long as you need

Each processor owns its domain

MD weak-scales

•••					
•••					
•••					
• •					
••••					
•••	••••		• • •		

MD does not strong-scale

The prospect for MD at the exascale

Metastability

- For materials away from melting:
 - Fast vibrations/fluctuations (ps)
 - Slow conformational changes (ns-s)

 Short simulations are often not informative of long-time behavior

> Theme of today's talk: How can we leverage this separation of timescales to **parallelize** the dynamics **in time** instead of space

Can we parallelize over space time?

[Perez, Cubuk, Waterland, Kaxiras, Voter, JCTC 12, 18 (2016)]

State-to-state dynamics

Goal is to generate a single statistically correct state-to-state trajectory

State-to-state dynamics

Need to capture **transition statistics**:

- Distribution of first-escape times from W
- Distribution of first-escape points on *dW*

Key Concept: Quasi-stationary Distribution (QSD)

$$\nu(A) = \frac{\int_{W} \mathbb{P}(X_t^x \in A, t < T_W^x) \, d\nu}{\int_{W} \mathbb{P}(t < T_W^x) \, d\nu}$$

If X_0 is distributed according to QSD, then, conditionally on not having left W up to time t, X_t is still distributed according to QSD

QSD for Langevin dynamics

In the following:

- Overdamped Langevin dynamics
- Absorbing boundary conditions on dW
- Generator has eigenvalues $0 > -\lambda_1 > -\lambda_2 \ge -\lambda_3 \dots$
- QSD is eigenfunction u₁(X) of generator corresponding to λ₁

Most of the following also applies to other dynamics, if:

- QSD exists
- QSD is unique
- Convergence to the QSD is fast

QSD for Langevin dynamics

$$\frac{\partial \rho}{\partial t} = L\rho \text{ on } W$$
$$\rho = 0 \text{ on } \partial W$$

With
$$L = -\nabla V \cdot \nabla + \beta^{-1} \Delta$$

Then:

$$\rho(X,t) = \sum_{k} e^{-\lambda_{k}t} c_{k}^{0} u_{k}(X)$$

For $t > (\lambda_2 - \lambda_1)^{-1}$ and conditional on not having escaped,

$$\hat{\rho}(X,t) \cong u_1(X) + O(e^{-(\lambda_2 - \lambda_1)t})$$

• Convergence to the QSD is **exponential** with rate $(\lambda_2 - \lambda_1)$

From the QSD:

- First escape time is random and exponentially distributed with rate λ_1
- First escape point is random and uncorrelated with escape time

Rate of memory loss

Overdamped Langevin: [Le Bris, Lelievre, Luskin, and DP, MCMA 18, 119 (2012)]

Langevin: [Lelievre, Ramil, Reygner, arXiv:2101.11999]

Properties of the QSD

- The QSD of W is **unique**

After only a short time in the state, the next escape time/location distribution is a complex function of the entry point

After spending $t_c > (\lambda_2 - \lambda_1)^{-1}$ in W, the next escape from W becomes *Markovian**

All trajectories that spent $t_c > (\lambda_1 - \lambda_2)^{-1}$ in W are statistically equivalent with respect to how and when they will leave W*

* Up to an exponentially small error in t_c

Trajectory building block

Define a **segment** as a trajectory that spent at least t_c in the same state before its beginning and before its end.

* Up to an exponentially small error in t_c

Parallel Trajectory Splicing (ParSplice)

Scalable since short trajectories can be (3) generated simultaneously (4) (3) (3) (4) 4 (2)(3) (4)(2)[Perez, Cubuk, Waterland, Kaxiras, Voter, JCTC 12, 18 (2016)] [Aristoff, SIAM/ASA Journal on Uncertainty Quantification 7, no. 2 (2019): 685-719]

3/16/22

Bookkeeping

Super-basins

Revisits are extremely common!

Speculation

Statistical oracle

Statistical oracle

We use this model to speculate where the trajectory will be in the future

Model quality affects efficiency, but not accuracy

See A. Garmon, DP, MSMSE 28, 065015 (2020) for more detail on model construction See A. Garmon, V. Ramakrishnaiah, DP, arXiv:2010.11792, for use of model for resource allocation

Maximum Parallel Speedup

Given an infinitely large computer, the (wall-clock) speedup vs MD is:

With perfect oracle: ~ infinity

If trapped in a super-state: $\sim \tau^{ss}{}_{esc}\,/\tau_{c}>> \tau^{i}{}_{esc}\,/\tau_{c}$

If trajectory never revisits states: ~ τ^i_{esc} / τ_c

Implementation in the EXAALT code

Shape fluctuations in nanoclusters

- Properties of nanoclusters are sensitive to shapes and sizes
- Some small nanoparticles don't have well defined shapes; continuously transform between different conformations
- This affects their
 physical/chemical properties
- How do these shape changes occur?

Smith et al., Science 233, 872 (1986)

Shape Fluctuations in Nanoparticles

- Metallic nanoparticles (150-300 atoms)
- Between 3,600 and 36,000 cores
- Long simulations: up to 4 ms
- Many transitions: up to ~100M per run
- Many states: up to ~1M per run

Huang, Lo, Wen, Voter, Perez, JCP 147, 152717 (2017) Perez, Huang, Voter, JMR 33, 813 (2018) Huang, Wen, Voter, Perez, Phys. Rev. Mat. 2, 126002 (2018)

Rao Huang (Xiamen U.)

Element	Number of Atoms	Т (К)	Trajectory Length (ps)	Number of Transitions	Number of States	Description	
Pt	146	900	70,257,528	162,965	6,246	$fcc \Rightarrow deca \Rightarrow ico$	
	170	800	672,396,434	1,937,031	147,377		
		900	20,373,095	240,306	117,680	fcc \Leftrightarrow 5-fold caps \Rightarrow 1co	
	190	800	1,350,168,728	6,630,131	303,572		
		900	348,662,895	688,027	93,346	$fcc \Rightarrow ico$	
	231	900	1,986,709,692	4,395,285	252,153		
		1000	92,171,602	955,401	42,383		
		1100	24,608,419	914,005	110,290		
	146	550	301,832,137	3,942,180	237,293	$fcc \Rightarrow ico$	
		500	4,156,073,707	6,160,286	240,594		
	170	550	23,712,165	656,202	241,491	fcc \Leftrightarrow 5-fold caps \Rightarrow ico	
	170	600	21,690,608	1,039,065	144,713	$fcc \Rightarrow deca \Rightarrow ico$ $deca \Rightarrow fcc \Rightarrow ico$	
Cu	190	500	489,113,720	93,863,998	368,356		
		600	91,701,072	9,863,950	847,016		
	231	500	438,302,547	49,409	12,817		
		550	66,578,597	4,623,717	262,785		
		600	85,056,822	184,737	169,217		
		700	832,190	237,840	89,356		
	146	600	237,233,817	22,910,983	119,489	$fcc \Rightarrow ico$	
Au	190	600	521,506,615	10,198,278	85,875	fcc \Leftrightarrow 5-fold caps	
	231	800	774,813,889	795,678	159,743	$fcc \Rightarrow 5$ -fold caps \Rightarrow helical	
	146	500	122,897,307	2,558,937	71,357		
		550	21,613,546	1,988,646	136,297	fcc ⇔ off-centered 5-fold axis	
	170	500	841,036,559	1,529,663	258,281		
Ag		600	128,965,726	3,961,585	616,430		
	190	400	1,651,496,973	2,416,400	60,802		
		500	109,165,848	1,414,790	154,083		
		600	30,620,753	1,091,307	147,863		
	231	500	20,445,451	946,623	92,818		

Benchmark results: An Easy Case

Rare events

N _{cores}	Trajectory length	Generated segment	#Transitions	#States	<t<sub>trans/N t_c></t<sub>	<r></r>	Simulation
	(ps)	time (ps)					rate
							(µs/hour)
9,000	556,093,988	556,539,980	4,614	28	13.19	166	139
18,000	1,315,941,923	1,346,516,503	24,610	64	2.: 7	384	333
27,000	2,209,432,238	2,214,868,608	13,479	47	4. 5	294	552
36,000	2,291,027,808	2,318,254,470	50,258	60	1.26	909	592
-			_			_	

T=300K, LANL Grizzly, 4h runs

99% of generated segments were spliced

Peak simulation rate: 10 µs/min, 10 ms/day

75% of generated segments were spliced 2700x speedup over MD

Very fast events: need only a few segments to escape 3/16/22 34

Discretization of continuous dynamics

- The ParSplice formalism maps complex continuous dynamics into a simple, arbitrarily accurate, discrete framework
- Can it inform the development of accurate discrete state models?
- Usual mapping is based on domains in configurations space
- Discrete model becomes a CTMC in the limit (λ₂−λ₁)→ ∞ for all states
- No clear picture away from this limit

Markov Renewal Process representation

- ParSplice inspired mapping:
 - The "color" of a trajectory is the color of the last state it spent $t_{\rm c}\,\text{in}$
- The color encodes the last domain the trajectory reached the QSD in.
- What is the appropriate representation of the color-to-color dynamics?

Markov Renewal Process representation

- Color changes when trajectory reaches QSD in a new state
- From the properties of the QSD:
 - Probability of next color can only depend on current color
 - Distribution of time to next color change cannot depend on previous colors
 - Distribution of time to next color change cannot depend on previous change times
 - Distribution of time to next color change can depend on next color

Time to settle in new state and change color can depend on new color

Markov Renewal Process

Color-to-color dynamics is described by a Markov Renewal Process*

 $P(c_{n+1}, t_{n+1} < T | history) = p_{c_{n+1},c_n} F_{c_{n+1},c_n}(T - t_n)$

for any state definition

* Up to an exponentially small error in t_c

 \bigotimes

Alanine dipeptide

Carefully defined domains using PCCA

Alanine dipeptide

Direct MD Renewal equations

t_c = 2 ps

t_c = 20 ps

 $t_{c} = 40 \text{ ps}$

Alanine dipeptide

Intentionally poorly defined states

Direct MD

Renewal equations

Alanine dipeptide

t_c = 2 ps

t_c = 20 ps

t_c = 40 ps

Direct MD Renewal equations

Villin headpiece

t_c = 2 ps

 $t_c = 2 ns$

t_c = 20 ns

Markov Renewal Process

- Not the only discretization scheme (CTMC, Hidden Markov Model, ...)
- To our knowledge, simplest scheme that provides arbitrary accuracy for any state definition
- Caveat:
 - not very informative if dynamics are not metastable. Leads to very long jumps.
- Next step: provide efficient numerical schemes to parameterize the MRP (ongoing work with D. Aristoff)

Agarwal, Gnanakaran, Hengartner, Voter, DP, arXiv:2008.11623

Conclusion

- MD is extremely powerful, but has a severe timescale limitations that cannot be cured by brute-force alone, even with exascale computing
- By leveraging insights from the theory of QSD, one can design rigorous parallel-in-time techniques that dramatically extend simulation times *into the milliseconds* at basically no cost in accuracy
- This enables more direct comparison with experiments and help fill-in the blanks in experimental measurements
- Progress in applied math, computer science, and domain science, was essential to address this problem.

Collaborators/Acknowledgements

- Method development: Arthur Voter
- **Mathematics:** Tony Lelièvre, Claude Le Bris, Mitch Luskin, David Aristoff
- Code: The EXAALT ECP team
- Funding: DOE BES, ECP; LANL LDRD
- Computing: LANL IC, NERSC

